
CUTECat: Concolic Execution
for Computational Law

Abstract. Many legal computations, including the amount of tax owed
by a citizen, whether they are eligible to social benefits, or the wages due
to civil state servants, are specified by computational laws. Their appli-
cation, however, is performed by expert computer programs intended to
faithfully transcribe the law into computer code. Bugs in these programs
can lead to dramatic societal impact, e.g., paying employees incorrect
amounts, or not awarding benefits to families in need.
To address this issue, we consider concolic unit testing, a combination
of concrete execution with SMT-based symbolic execution, and propose
CUTECat, a concolic execution tool targeting implementations of com-
putational laws. Such laws typically follow a pattern where a base case
is later refined by many exceptions in following law articles, a pattern
that can be formally modeled using default logic. We show how to han-
dle default logic inside a concolic execution tool, and implement our
approach in the context of Catala, a recent domain-specific language
tailored to implement computational laws. We evaluate CUTECat on
several programs, including the Catala implementation of the French
housing benefits and Section 132 of the US tax code. We show that
CUTECat can successfully generate hundreds of thousands of testcases
covering all branches of these bodies of law. Through several heuristics,
we improve CUTECat’s scalability and usability, making the testcases
understandable by lawyers and programmers alike. We believe CUTECat
paves the way for the use of formal methods during legislative processes.

1 Introduction

Since at least the Sumerian empire and the code of Ur-Nammu [57], human
societies have been governed by laws. From constitutional law to environmental
law, including criminal law, immigration law or intellectual property law, laws
are applied in a wide range of contexts, representative of the diverse facets of
modern societies. Laws are typically stated in natural language, e.g., English,
and therefore require human interpretation to determine when and how they
must apply: to do so, a criminal trial might rely on a grand jury to determine
the guilt of a defendant, while companies typically hire highly specialized lawyers
to ensure that a merger is performed according to corporate law.
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Other laws, however, focus on defining well-specified computations, for in-
stance, the amount of taxes that a household owes, the wages of civil state
servants, or whether a given family is eligible to social benefits depending on
their situation. As they must be applied to a large number of citizens, such laws,
commonly known as computational laws, are typically implemented in expert
computer systems, which are able to automate the computation for any input.

Unfortunately, as for any computer program, legal expert systems are not
immune to bugs, which can have tremendous consequences, either for the states
or their citizens. Case in point, more than half of all Canadian civil servants
suffered pay issues from the Phoenix automated payroll system, resulting in
years of fixing incurred financial issues for civil servants, and, for the Canadian
government “$2.2 billion in unplanned expenditures”, while the program should
have provided “$70 million in annual savings by centralizing pay operations”
[40]. Similarly, bugs in Louvois, the French army payroll system, led to several
years of incorrect payments to military households, either causing missed wages
or overpayments that had to be reimbursed by individuals years later [42]. Such
cases are not isolated incidents, and examples of public legal systems that were
either faulty or abandoned during development abound in many countries [47].

One of the core issues lies with the particular structure of computational law,
commonly consisting of a base case refined by exceptions spread out throughout
law texts. This structure, corresponding to default logic [6, 28], is not straight-
forward to encode using modern programming languages. This leads to discrep-
ancies between code and law, where design choices made by programmers can
be hard to understand by lawyers. Conversely, maintaining such implementa-
tions when legislative processes modify the law becomes tricky, as programmers
cannot necessarily accurately pinpoint required changes in their code.

To address this issue, Merigoux et al. [37] recently introduced Catala, a
domain-specific language (DSL) tailored to implement computational laws. At
the heart of Catala lies programming constructs called default terms, which
faithfully implement default logic. Default terms are first-class citizens in the
core Catala language. To simplify their use, they are exposed through a custom
syntax designed to be understandable by programmers and lawyers alike. This
syntax enables Catala programmers to define the base case of a default term
and its corresponding exceptions in different parts of the code, thus accurately
reflecting the structure of legal texts. By combining this feature with literate
programming, Catala enables a programming style where an official legal text
is intertwined with its implementation, thus allowing programmers to work in
concert with lawyers to ensure a faithful translation into code of the law.

To minimize common programming issues, Catala’s design purposely avoids
risky programming languages constructs, e.g., by providing infinite-precision
numbers rather than floating-point ones, and by avoiding NULL values. Despite
this effort, legal implementations in Catala can nevertheless contain bugs for
three reasons. First, by heavily operating on numerical values such as amounts
of money, Catala is not immune to standard runtime errors such as divisions
by zero, possibly leading to crashes. Second, in spite of its peer-programming
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approach where lawyers and programmers work together to implement the law,
translations of legal texts into code amount to legal interpretations, which can
be erroneous. Last, the law itself might exhibit inconsistencies, for instance, by
defining contradicting exceptions under specific circumstances, or by forgetting
to consider some situations – in Catala implementations, this would lead to a
runtime exception being raised by the program.

To circumvent these issues, public administrations heavily rely on testing;
some departments are in charge of manually handcrafting testcases, interpreting
the law to compute results, and comparing them to the outputs of legal expert
systems to ensure their conformance with legal texts. Unfortunately, the high
number of cases, and the regular modifications of laws make this manual process
costly and painstaking, and do not guarantee that corner cases are not missed.

To address this problem, this paper therefore advocates applying formal ver-
ification techniques to computational law. Doing so raises several challenges.
First, formal verification tools must be able to efficiently reason about the core
concept of computational law, namely, default logic. Second, to facilitate its
adoption, the verification process must not require expert knowledge of formal
verification, and thus needs to be as automated as possible. Last but not least,
when identifying issues, it is crucial that verification tools provide concrete ex-
amples usable by lawyers, so that they can compare them with legal texts and
determine whether these correspond to law inconsistencies.

Given these constraints, we focus our attention on the application of concolic
unit testing [21, 51], a combination of concrete execution with SMT-based sym-
bolic execution, which we believe to hit a sweet spot when it comes to reasoning
about computational law. Computational law, and thus its implementation in
Catala, is deterministic, and does not contain loops or recursion, alleviating a
well-known challenge for concolic testing [10, 20]. Additionally, its automated
nature and the concrete inputs it generates during analysis pave the way for use
by lawyers and programmers alike.

Our contributions are the following: we show how to concolically execute
computational law programs by providing a formal concolic semantics for default
terms (Sec. 2.2). Relying on this formal model, we then implement CUTECat,
a concolic execution execution engine for Catala programs (Sec. 3). CUTECat
aims to detect all runtime errors, such as divisions by zero but also law in-
consistencies due to missing, or conflicting interpretations. CUTECat includes
several optimizations, both to improve its performance and scalability, as well as
its usability, aiming to generate human-friendly testcases to facilitate legal in-
terpretation by lawyers (Sec. 4). Finally, we experimentally evaluate CUTECat
on a range of Catala programs (Sec. 5). Relying on real-world codebases from
French and US laws, we first perform an ablation study to evaluate the impact of
our different optimizations. We then conclude by empirically demonstrating that
CUTECat can scale to the largest real-world Catala codebase currently avail-
able, namely, the implementation of the French housing benefits (19655 lines of
Catala, including specification), generating 186390 tests in less than 7 hours of
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CPU time. Our development is open-source and publicly available on GitHub;
all experimental claims made in this paper are documented in an artifact [23].

2 Encoding Default Logic in Concolic Execution

In this section, we present our encoding of default logic into concolic execution.
We start with some background about computational law, and how it relates to
default logic.

2.1 Computational Law and Default Logic

Throughout this paper, we will rely on a simplified income tax computation as a
running example. This computation determines the amount of taxes a household
must pay, depending on their income. Typically, regulations specify a tax rate,
that is multiplied by the household income to determine the income tax to pay.
For instance, if the tax rate is set to 20%, a household earning $100,000 would
pay $20,000 in income tax. In practice, tax laws commonly define different tax
rates for different income brackets; we omit this in our example for simplicity.

To address several societal issues, this computation can however be modified
depending on households. For instance, low-income households (which we define
in this example as earning no more than $10,000) might be taxed to a reduced
rate of 10%. Furthermore, large households (which we define in this example
as households with three or more children), might benefit from a tax break, for
instance, lowering their tax rate to 15%. For now, we do not set any interpretation
priority for households having both a low income and a large number of children.

This structure is typical of computational laws: we have one base case (the
tax rate is 20%), followed by several conditional exceptions, capturing specific
situations (large, or low-income households). Implementing this structure in tra-
ditional programming languages is challenging for two reasons. First, exceptions
in legal texts are commonly spread out through several law articles, which does
not match the standard monolithic variable or function definitions. Second, legal
implementations should closely follow the structure of the law they implement.
Implementations correspond to applications of the law; any difference with the
original text thus amounts to a legal reinterpretation, which should be performed
by lawyers, and not programmers. Heavily transforming the law to match tradi-
tional programming idioms is therefore ill-advised. To address this issue, earlier
work proposed default terms [37], heavily inspired by default logic [6, 28].

Default terms take the form ⟨e1, . . . , en | ejust :- econs⟩, where e1, . . . , en
are default expressions called ‘exceptions’, ejust is a boolean expression called
‘default condition’, and econs is a default expression. Empty values are written
as ∅, and conflict values, when two exceptions occur at the same time, as ⊛.
Due to typing guarantees, omitted here for brevity, the default condition never
reduces to ∅ or ⊛. The grammar and formal semantics of default terms, adapted
from [37], are available in Fig. 1 and Fig. 2 respectively. Expressions and values
also contain numeric and boolean expressions, whose semantics is standard and
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Value v ::= true | false | n boolean, integer literals
| ∅ empty value
| ⊛ conflict value

Expression e ::= x | v variable, values
| e ▷◁ e integer, boolean binary operators
| ⟨−→e | e :- e⟩ default term

Fig. 1: Grammar of default terms

DefaultExpr
e −→∗ v v ̸= ⊛

⟨v1,. . .,vi, e,. . ., | ejust :- econs⟩ −→ ⟨v1,. . .,vi, v,. . ., | ejust :- econs⟩

DefaultError
e −→∗ ⊛

⟨v1,. . .,vi, e,. . ., | ejust :- econs⟩ −→ ⊛

DefaultTrueNoExceptions
ejust −→∗ true

⟨∅,. . .,∅ | ejust :- econs⟩ −→ econs

DefaultFalseNoExceptions
ejust −→∗ false

⟨∅,. . .,∅ | ejust :- econs⟩ −→ ∅

DefaultOneException
v ̸= ∅,⊛

⟨∅,. . .,∅,v,∅,. . .,∅ | ejust :- econs⟩ −→ v

DefaultExceptionsConflict
vi ̸= ∅ vj ̸= ∅ ∀k, vk ̸= ⊛

⟨v1,. . .,vi,. . .,vj,. . .,vn | ejust :- econs⟩ −→ ⊛

Fig. 2: Selected reduction rules for default terms

thus omitted from the presentation. According to this semantics, default terms
are executed as follows:
– If all exceptions reduce to empty values, that is, if no exception is raised or if

there are none, then the default expression reduces either to econs if condition
ejust evaluates to true (DefaultTrueNoExceptions), or to ∅ otherwise
(DefaultFalseNoExceptions). For instance, the term ⟨ | false :- 1⟩ re-
duces to ∅.

– If exactly one exception ei reduces to a non-empty value, then the default ex-
pression reduces to its value (DefaultOneException). Therefore, the term
⟨⟨ | true :- 1⟩, ⟨ | false :- 2⟩ | true :- 3⟩ reduces to 1.

– If more than one exception expression reduces to a non-empty value, that
is if several exceptions are raised at the same time, then the default expres-
sion reduces to a conflict error ⊛ (DefaultExceptionsConflict)3. Thus,
⟨⟨ | true :- 1⟩, ⟨ | true :- 2⟩ | true :- 3⟩ yields ⊛.

Remark 1. To lighten notations, we will omit the list of exceptions from a default
term when it is empty. For instance, the term ⟨ | e1 :- e2⟩ will be written as
⟨e1 :- e2⟩.
3 Two raised exceptions are considered a conflict even if they lead to the same result.
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Encoding the income tax rate we described earlier as a default term is then
straightforward. As the base case always applies, the default condition ejust is
trivial, and the two cases for low-income and large households are encoded as
exceptions, leading to the following term:

⟨⟨income ≤ $10, 000 :- 10%⟩, ⟨nb_children ≥ 3 :- 15%⟩ | true :- 20%⟩

2.2 Concolically Executing Default Terms

We now present how to support default terms during concolic execution. We
start with some preliminaries about concolic execution, and the related concept
of symbolic execution.

Background: Symbolic and Concolic Execution. Symbolic execution [5, 14, 24,
27] is a program analysis technique that aims to explore all feasible program
paths in a program, and that has been successfully applied to a wide range of
languages [8, 9, 13, 16, 39, 45, 46]. In symbolic execution, concrete inputs are
replaced by symbolic values, and a symbolic interpreter is tasked with executing
the program under test. As the program is executed, the interpreter will collect
symbolic constraints characterizing a given program execution path through a
symbolic path constraint. When hitting a conditional branching, the symbolic
interpreter will add the condition to the current path constraint, query an SMT
solver [2, 4, 15, 18] to determine whether the path constraint is satisfiable, and
resume execution of the program. When a constraint is deemed unsatisfiable,
the interpreter will backtrack, and attempt to explore another execution path.

To make things more concrete, consider the small program P
def
= if x > 0

then return 0 else if y < 10 then return 1 else error. We present the differ-
ent steps of the symbolic execution in Fig. 3, showcasing the generated path con-
straint tree at different steps. Treating x and y as symbolic variables, a symbolic
interpreter would first reach the conditional branching if x > 0, and generate
two paths to explore, corresponding to the path conditions x > 0 and ¬(x > 0)
(Fig. 3a). As both path conditions are satisfiable, both execution paths need to
be explored. Arbitrarily picking the first path condition, it would then reach the
terminal statement return 0, terminating the execution of this path (Fig. 3b).
Executing the second path, it would then split the path constraint tree again
according to the constraint y < 10. As both path conditions ¬(x > 0), y < 10
and ¬(x > 0),¬(y < 10) are satisfiable, the symbolic interpreter would explore
both paths, thus detecting that the error statement is reachable (Fig. 3c).

Despite its successes, symbolic execution however faces several limitations.
Symbolic execution tools heavily rely on SMT solvers, and therefore struggle
when considering symbolic constraints beyond theories well-supported by auto-
mated solvers, such as non-linear arithmetic. Additionally, symbolic interpreters
typically require access to the analyzed code, and hence do not work well when
interacting with an external environment or external library calls [1, 10, 20].

To address these issues, concolic execution, a combination of concrete and
symbolic execution was proposed [21, 51]. In concolic execution, the program is
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if x > 0

?

x > 0

?

¬(x > 0)

(a) First step

if x > 0

return 0

x > 0

?

¬(x > 0)

(b) Second step

if x > 0

return 0

x > 0

if y < 10

return 1

y < 10

error

¬(y < 10)

¬(x > 0)

(c) Final state

Fig. 3: Path constraint trees at different stages of symbolic execution. Nodes
marked as ? are not yet explored

executed with concrete inputs, and instrumented to collect symbolic constraints
during execution. When one execution terminates, some of the constraints in the
path condition are negated and new inputs are generated through a call to an
SMT solver, leading to the exploration of a new program path.

Compared to symbolic execution, concolic execution has several advantages.
First, when faced with unsupported logical theories, concolic execution can still
make progress by executing the program, instead of getting stuck when en-
countering complex constraints. Second, by relying on concrete inputs covering
a wide range of program paths, concolic execution naturally provides a repro-
ducible testbed that can be used for automated unit testing, even when symbolic
execution would be imprecise due to complex program statements or calls to li-
braries whose code is unavailable [20]. Last, while the generation of new inputs is
typically performed by an automated solver to guarantee the exploration of new
program paths, it can also be combined with other input generation techniques
such as fuzzing [22, 32, 44, 54].

To formally describe concolic execution, we will rely on the following nota-
tions for instrumented semantics. When e −→∗ e′ denotes the concrete evalu-
ation from expression e to expression e′, χ ⊢ e −→∗ χ′ ⊢ e′ will denote that,
under initial path condition χ, e evaluates to e′ with new path condition χ′.

Coming back to our toy program P , concolic testing would therefore proceed
as follows. Let us assume that we start with inputs x = 5, y = 5. Then, we
would have · ⊢ P −→∗ x > 0 ⊢ 0, i.e., the concrete execution of the program
returned the value 0, and the path condition x > 0 was collected. A concolic
engine would then negate part of the path condition, query the SMT solver with
the new constraints, i.e., ¬(x > 0), and start another iteration with the inputs
generated by the solver. This process would repeat until negating constraints
does not lead to novel execution paths and all feasible program paths have been
explored, with concrete inputs leading to each of these paths.

Encoding Default Terms. To concolically execute default terms, we now need
to provide a symbolic representation to complement the concrete semantics pre-
sented in Fig. 2. To do so, we show how to instrument the concrete semantics to
collect symbolic constraints characterizing the current execution path, by mate-
rializing the control flow structure of the evaluation of a default expression. In
order to cover all program paths induced by default terms, this encoding must
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therefore consider all combinations of raised exceptions, as well as a branching
due to the default condition ejust when no exception is triggered.

We formally define our instrumented semantics in Fig. 4. We slightly extend
the notations presented in the previous section, and denote as χ ⊢ e | C a default
expression e with symbolic constraints χ and C. The constraint χ corresponds to
the path condition collected up to the evaluation of the current default term. The
constraint C, which we will call local constraint, corresponds to the constraints
collected during the evaluation of the current term. The distinction between χ

and C is irrelevant for the rules presented in this section, and χ ⊢ e | C can safely
be understood as χ ∧ C ⊢ e, i.e., the current path condition is the conjunction
of χ and C. The importance of this separation will appear in Sec. 4.1, when
discussing several optimizations to concolic execution of default terms. When
either χ or C are trivial, we will omit them to simplify notations.

To illustrate how our semantics operates, we will rely on the following exam-
ple, where x and b are respectively integer and boolean variables: ⟨⟨b :- 1⟩, ⟨x =
0 :- 2⟩ | x > 0 :- 3⟩. Let us assume that we want to concolically execute this
term with x = 3 and b = true. Initially, both the global constraints χ and local
constraints C are trivial. Following rule C-DefaultExpr, we must first reduce
the exception ⟨b :- 1⟩ to a value. Since we have a default term (cf. Remark 1) and
its default condition b holds, we can apply rule C-DefaultTrueNoExceptions,
obtaining the concolic term b ⊢ 1. We conclude the application of rule C-
DefaultExpr, leading to the concolic term ⟨1, ⟨x = 0 :- 2⟩ | x > 0 :- 3⟩ | b.
We then perform a similar reduction on the second exception by combining rules
C-DefaultExpr and C-DefaultFalseNoExceptions to obtain the concolic
term ⟨1,∅ | x > 0 :- 3⟩ | b ∧ ¬(x = 0). As exactly one exception reduced to
a non-empty or error value, the final step in the concolic execution is then to
apply rule C-DefaultOneException; local constraints are thus appended to
the current (empty) path condition. The execution therefore terminates with the
value b∧¬(x = 0) ⊢ 1, accurately capturing that any set of inputs satisfying the
path constraint b ∧ ¬(x = 0) will follow the same execution path.

A Complete Concolic Execution. Equipped with our concolic semantics, we can
now define a concolic execution operating on default terms. To do so, we follow
the standard workflow of concolic execution: starting from an initial, arbitrary
set of inputs, we concolically execute the program, and collect the corresponding
path constraints. Once the execution terminates, we choose another unexplored
path, querying the SMT solver to generate an input satisfying the new path
constraint, and therefore leading to a different execution. We repeat this process
until all paths have been explored, or an exploration timeout has been reached.

To illustrate how a complete concolic execution operates, we will reuse the
default term ⟨⟨b :- 1⟩, ⟨x = 0 :- 2⟩ | x > 0 :- 3⟩ previously presented. Starting
from inputs x = 3 and b = true, we previously saw that this term reduced
to the value 1, generating the constraints b and ¬(x = 0). By negating the
last constraint and querying the solver, we obtain new inputs x = 0 and b =
true, and perform another concolic iteration. Repeating this process leads to the
generation of 5 different testcases fully covering the program, and identifying two
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Notations

χ ⊢ e | C “Expression e has path condition χ and local constraint C”

χ ⊢ e “Syntactic sugar for χ ⊢ e | ·”

e | C “Syntactic sugar for · ⊢ e | C”

e “Syntactic sugar for · ⊢ e | ·”

χ ⊢ e | C −→ χ′ ⊢ e′ | C′ “Under path condition χ and local constraint C,
e evaluates to e′ with new path condition χ′ and local constraint C′”

C-DefaultExpr
e −→∗ χ′ ⊢ v v ̸= ⊛

χ ⊢ ⟨v1, ...,vi, e,... | ejust :- econs⟩ | C −→ χ ⊢ ⟨v1, ...,vi, v,... | ejust :- econs⟩ | C ∧ χ′

C-DefaultError
e −→∗ χ′ ⊢ ⊛

χ ⊢ ⟨v1,. . .,vi, e,. . ., | ejust :- econs⟩ | C −→ χ ∧ χ′ ∧ C ⊢ ⊛

C-DefaultTrueNoExceptions
ejust −→∗ χ′ ⊢ true

χ ⊢ ⟨∅,. . .,∅ | ejust :- econs⟩ | C −→ χ ∧ C ∧ χ′ ∧ ejust ⊢ econs

C-DefaultFalseNoExceptions
ejust −→∗ χ′ ⊢ false

χ ⊢ ⟨∅,. . .,∅ | ejust :- econs⟩ | C −→ χ ∧ C ∧ χ′ ∧ ¬(ejust) ⊢ ∅

C-DefaultOneException
v ̸= ∅,⊛

χ ⊢ ⟨∅,. . .,∅,v,∅,. . .,∅ | ejust :- econs⟩ | C −→ χ ∧ C ⊢ v

C-DefaultExceptionsConflict
vi ̸= ∅ vj ̸= ∅ ∀k, vk ̸= ⊛

χ ⊢ ⟨v1,. . .,vi,. . .,vj,. . .,vn | ejust :- econs⟩ | C −→ χ ∧ C ⊢ ⊛

Fig. 4: Concolic semantics for default terms

execution paths leading to ⊛ and ∅ respectively. The summary of the concolic
execution is available in Fig. 5.

3 CUTECat: Implementing Concolic Execution

Relying on the default logic and its concolic interpretation presented in the
previous section, we now present CUTECat, a concolic execution engine for the
Catala programming language.

Catala is a recent domain-specific language tailored to implement computa-
tional laws, relying on default logic under the hood [37]. We show an example
Catala program in Fig. 6, encompassing the default term for the simplified in-
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Step b x Output Constraints after evaluation Next constraints to try

# 1 true 3 1 [(b),¬(x = 0)] b ∧ x = 0
# 2 true 0 ⊛ [(b), (x = 0)] ¬b
# 3 false 3 3 [¬(b),¬(x = 0), (x > 0)] ¬b ∧ ¬(x = 0) ∧ ¬(x > 0)
# 4 false −1 ∅ [¬(b),¬(x = 0),¬(x > 0)] ¬b ∧ x = 0
# 5 false 0 2 [¬(b), (x = 0)] –

Fig. 5: Concolic testcase generation for ⟨⟨b :- 1⟩, ⟨x = 0 :- 2⟩ | x > 0 :- 3⟩
1 ```catala
2 declaration structure Household:
3 data income content money
4 data nb_children content integer
5
6 declaration scope IncomeTaxComputation:
7 input house content Household
8 internal tax_rate content decimal
9 output income_tax content money

10 ```
11
12 ## Article 1
13 The income tax for an individual is
14 defined as a fixed percentage of the
15 individual's income over a year.
16 ```catala
17 scope IncomeTaxComputation:
18 definition income_tax equals
19 house.income * tax_rate
20 ```
21
22 ## Article 2
23 The fixed percentage mentioned at
24 article 1 is equal to 20%.
25 ```catala

26 scope IncomeTaxComputation:
27 definition tax_rate equals 20%
28 ```
29
30 ## Article 3
31 If the individual's income is less
32 than $10,000, the fixed percentage
33 mentioned at article 1 is equal to 10%.
34 ```catala
35 scope IncomeTaxComputation:
36 exception definition tax_rate
37 under condition house.income <= $10,000
38 consequence equals 10%
39 ```
40
41 ## Article 4
42 If the individual is in charge of 3 or
43 more children, then the fixed percentage
44 mentioned at article 1 is equal to 15%.
45 ```catala
46 scope IncomeTaxComputation:
47 exception definition tax_rate
48 under condition house.nb_children >= 3
49 consequence equals 15%
50 ```

Fig. 6: Running example: a simplified income tax computation

come tax computation described in Sec. 2.1. One important aspect of Catala is
its literate programming capabilities, allowing to reflect the structure of the law
in the implementation. As seen in this example, each unit of law is immediately
followed by its implementation. The main purpose is to facilitate the maintain-
ability and transparency of the implementation with respect to the law test; at
compilation time, Catala will rely on the Markdown code markers ```catala to
extract the implementation. We refer the interested reader to the Catala tuto-
rial [36] for a more detailed description of the merits of literate programming
when implementing computational law.

We now provide an overview of the Catala language on our running example.
Catala requires strongly typed declarations exposing the interfaces of a program.
Here, lines 2-4 define a Household record, defined by an income and a number of
children. Scopes are the basic abstraction unit in Catala; they can be conceived
as a loose equivalent to functions in other programming languages. A scope
is first statically declared, with a typed declaration of its inputs, outputs and
internal variables. In our example, lines 6-9 define the interface of our income tax
computation, which computes an income tax for a given household. The main
case of the income tax computation is defined lines 17-19 and 26-27: the default
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Source
code

. . . Default
calculus

Statement
calculus

InterpreterCUTECat

Fig. 7: Passes of the Catala compiler, and CUTECat integration

tax rate is 20% of the household’s income. This rate is amended by two cases, one
setting it at 10% for low incomes (lines 35-38), the second setting the rate to 15%
for large families (lines 46-49). Note that while these new definitions are following
one another in this simplified example, real-world Catala implementations might
have amended these definitions in several different files, for instance if the base
case is defined in the Tax Code while the large families exception is defined in the
Family Code. During compilation, the Catala toolchain will combine the three
definitions of tax_rate in IncomeTaxComputation through the use of a default
term, corresponding to the one defined in the previous section: ⟨⟨income ≤
$10, 000 :- 10%⟩, ⟨nb_children ≥ 3 :- 15%⟩ | true :- 20%⟩

Our concolic engine, CUTECat, has been integrated directly into the Catala
toolchain, whose relevant parts are shown in Fig. 7. To allow integration of Catala
implementations in existing projects, the compiler translates Catala source code
into mainstream programming languages like C or Python. To do so, it relies
on a series of intermediate representations (IRs), elided here, until reaching the
default calculus. The default calculus is one of the last IRs in the compilation
pipeline, and is very close to the statement calculus which transforms expressions
into statements before emitting C or Python code.

Default terms are explicitly materialized in the default calculus; it is where
the reference Catala interpreter operates, following the semantics for default
terms described in Fig. 2. This is therefore a natural choice for the implementa-
tion of our concolic engine; additionally, being located at the same compilation
step of the interpreter nullifies any discrepancies of potential bugs introduced
earlier in the compilation pipeline. We implemented our concolic interpreter as a
fork of the standard interpreter, instrumenting it to collect symbolic constraints.
This design allows us to closely follow the reference semantics of Catala, thus
minimizing implementation mistakes, while also simplifying the maintenance of
CUTECat when the Catala language evolves.

Similarly to other works on concolic execution [32, 51], CUTECat relies on a
depth-first search (DFS) strategy to explore new execution paths. In a DFS ex-
ploration, a concolic engine generates new inputs by negating the last constraint
added to the path condition. Concretely, during a concolic iteration, CUTECat
keeps the constraints C used to generate the current input. Each constraint is
annotated to indicate whether it has already been negated. The execution gen-
erates a path condition C ′, which is compared to C; all constraints in C ′ \C are
marked as new, and the last new constraint in C ′ is negated to generate a new in-
put. This workflow corresponds to a DFS exploration of the path constraint tree;
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1 scope IncomeTaxComputation:
2 exception definition income_tax
3 under condition house.income <= $10,000
4 consequence equals house.income * 10%

Fig. 8: Removing conflicts in income tax computation

however, it only requires keeping the last explored branch in memory instead of
the entire tree, therefore improving the performance of concolic execution.

To illustrate how CUTECat operates, we now describe the concolic execution
of our running example. CUTECat generates here four different cases, in an order
determined by the values used in the first iteration; in our case, they are set to
income = $0 and nb_children = 0.

1. income is $0 and there are no children. In that case, only the first exception
(lines 35-38 of Fig. 6) can be applied, and the tax is $0.

2. income is $0 and there are three children. In that case, both exceptions (lines
35-38 and 46-49) can be applied. A conflict is raised to the user, showing
that the law has been unfaithfully translated, or that it is ambiguous.

3. income is $10,000.01 and there are two children. In that case, the general case
(lines 26-27) applies, and the tax is $2,000 (monetary amounts are rounded
to the cent).

4. income is $10,000.01 and there are three children. In that case, the excep-
tional case at lines 46-49 applies and the tax is $1,500.

By default, CUTECat outputs these different cases directly to the user, how-
ever, we also provide facilities to directly generate Catala test scopes. These test
scopes can be saved, and easily replayed using the Catala toolchain, either by
using the reference interpreter or by compiling it to one of the Catala backends.

As identified by our concolic execution, our running example can raise con-
flicts, i.e., when considering large, low-income households. This conflict is not due
to an implementation error, but rather to an ambiguity in our (simplified) law.
Resolving this ambiguity requires legal interpretation, which must be performed
by lawyers, and not programmers. In this case, legal precedents might suggest
that ambiguities shall be resolved in the most favorable way to citizens, therefore
defining a 10% tax rate. To implement this decision, programmers could thus
modify the Catala implementation of Article 3 as shown in Fig. 8, by material-
izing a priority order on the evaluation of both exceptions: as the exception is
now defined on income_tax, this exception will trigger first, before reaching the
base computation depending on tax_rate4.

CUTECat is implemented in 3,400 lines of OCaml code, and relies on the Z3
SMT solver [18], called through its OCaml bindings. It is an integral part of the
Catala toolchain, and therefore leverages its build system, simplifying the use of
CUTECat on Catala projects. To provide users with more control on the concolic
execution, CUTECat allows the use of assertions in the source code to restrict
4 Note that a more idiomatic fix would make use of Catala "labels", that enable

programmers to order exceptions explicitly. We omit this solution to keep our pre-
sentation of Catala small. The Catala tutorial [36] has more information on labels.
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the input space, for instance, to specify that only households in a given country
or state must be considered. Users can provide hints about initial inputs for the
concolic execution, in order to quickly explore variants of a given situation.

Divisions and Rounding. In addition to our handling of default terms described
in Sec. 2, CUTECat supports the concolic execution of most Catala constructs,
including arbitrary-precision integers, booleans, money and decimal expressions;
structures and field operations; algebraic data types and pattern-matching; func-
tions and function calls; and conditionals. The concolic execution of most of these
operations is standard, and we therefore omit their presentation. Two points are
however of particular interest, namely, arithmetic divisions and rounding.

Divisions by zero are a well-known source of runtime errors. To reason about
them, concolic tools therefore consider divisions as implicitly branching, and
collect whether the denominator is equal to zero as a symbolic constraint.5

By providing different representations for numerical values, i.e., decimal (rep-
resented as rationals) and integers values, Catala also requires conversions be-
tween these types; when casting a decimal to an integer, this is implemented
as a rounding operator. Catala’s rounding convention is to round to the near-
est integer; when two are equidistant, it returns to the one furthest away from
0. To model this semantics, we define a custom round Z3 function, defined as
round(q) = if q>=0 then floor(q + 1/2) else -floor(-q + 1/2); the floor op-
eration is implemented using Z3’s native casting from rationals to integers.

As part of our experimental evaluation of CUTECat (Sec. 5), our precise
modeling of rounding led us to find inputs where the different Catala backends
were inconsistent: rounding operations in Catala’s Python backend exhibited
minor differences with the reference interpreter. We reported this issue to the
Catala developers, and upstreamed a fix to the compiler.

Limitations. CUTECat currently supports a large subset of Catala which is suffi-
cient to analyze real-world programs (Sec. 5) that mainly rely on integer-rational
reasoning as well as algebraic datatypes. However, operations on lists and dates
are only partially supported. List operations in Catala include filtering depend-
ing on a condition, aggregating over list contents to compute all sorts of values,
and applying a function to all elements in the list; providing symbolic encoding
of such operations would require higher-order symbolic reasoning [43, 55]. On
the other hand, dates can easily be represented in an SMT solver as the number
of days since a specific point in time, e.g., the Unix epoch. This representation
allows to model several operations, such as the addition of a (possibly symbolic)
number of days, or the duration corresponding to the difference between two

5 Note that our semantics conflates runtime errors with conflicts, and returns ⊛ in
both cases. Indeed, the conflict value acts as a de facto uncatchable exception: when
it appears, it stops the evaluation of the program, which immediately returns. From
the user’s perspective, the main concern is whether the program can lead to an error,
independently of which one. As we generate concrete inputs, it is always possible to
run the reference Catala interpreter to provide precise error reporting.
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dates. Unfortunately, other operations, including month and year addition or re-
turning the first day of a week or a month, have a more complex semantics [41]
which does not naturally fit into this SMT encoding.

To handle these operations, we leverage the strengths of concolic execution
over symbolic execution, and do not generate any symbolic encoding, relying
instead entirely on concrete evaluation at the cost of completeness. We leave the
exploration of suitable symbolic models for these operations to future work.

Finally, our implementation currently only supports the Z3 SMT solver, as
it directly provides ready-to-use OCaml bindings. This limitation could be eas-
ily lifted, as we can already generate SMT-LIB files [3] for each SMT query,
which can be consumed by most other SMT solvers [2, 4, 15]. Additionally, our
prototype is single-threaded; the recent introduction of Multicore OCaml [52]
nevertheless paves the way for parallelizing concolic execution [7, 53].

4 Improving the Scalability and Usability of CUTECat

To improve the scalability of CUTECat, we now discuss various optimizations
and heuristics to enhance the performance of concolic execution, as well as the
usability of our toolchain by non-expert users. The concrete impact of these
optimizations will be evaluated experimentally in Sec. 5.

4.1 Optimizing Concolic Execution of Default Terms

The approach presented in Sec. 2.2 allows us to perform concolic execution on
default terms. However, to improve interactivity with developers, our goal is not
only to exhaustively analyze all program execution paths, but also to find pos-
sible errors as early as possible during the analysis. In this section, we therefore
propose several optimizations aiming to prune constraints leading to redundant
cases, and to prioritize executions that might lead to conflict errors.

Lazily Evaluating Exceptions. When evaluating a default term, the semantics
presented in Fig. 2 requires first evaluating all exceptions, except if one of them
raises a conflict error (DefaultExpr). If two exceptions evaluate to a non-
empty value, the ensuing conflict is therefore only detected when applying rule
DefaultExceptionsConflict. As concrete executions are in practice very
fast, this has little performance impact when concretely executing a default term;
furthermore, from a usability perspective, it is helpful to report all conflicting
cases to users. However, the overhead becomes larger during concolic execution,
where we must explore all possible execution paths when evaluating remaining
exceptions, including many calls to an SMT solver.

To circumvent this issue, we propose in Fig. 9 alternative semantic rules to re-
place DefaultExpr and DefaultExceptionsConflict, as well as their con-
colic counterparts. These new rules stop the evaluation as soon as two exceptions
return a non-empty value. This prevents exploring the remaining exceptions; the
multiple execution paths would all lead to a conflict in the current default term.
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DefaultExpr-Lazy
e −→∗

v v ̸= ⊛

⟨∅,. . .,∅, e,. . ., | ejust :- econs⟩ −→ ⟨∅,. . .,∅, v,. . ., | ejust :- econs⟩

DefaultExprOne-Lazy
e −→∗ ∅ vi ̸= ⊛,∅

⟨∅,. . .,vi,. . .,∅, e,. . ., | ejust :- econs⟩ −→ ⟨∅,. . .,vi,. . .,∅,∅,. . ., | ejust :- econs⟩

DefaultExceptionsConflict-Lazy
e −→∗

v v ̸= ⊛,∅ vi ̸= ⊛,∅
⟨∅,. . .,vi,. . .,∅, e,. . ., | ejust :- econs⟩ −→ ⊛

C-DefaultExpr-Lazy
e −→∗ χ′ ⊢ v v ̸= ⊛

χ ⊢ ⟨∅,. . .,∅, e,... | ejust :- econs⟩ | C −→ χ ⊢ ⟨∅,. . .,∅, v,... | ejust :- econs⟩ | C ∧ χ′

C-DefaultExprOne-Lazy
e −→∗ χ′ ⊢ ∅ vi ̸= ⊛,∅

χ ⊢ ⟨∅,. . .,vi,. . .,∅, e,... | ejust :- econs⟩ | C −→ χ ⊢ ⟨∅,. . .,vi,. . .,∅,∅,... | ejust :- econs⟩ | C ∧ χ′

C-DefaultExceptionsConflict-Lazy
e −→∗ χ′ ⊢ v v ̸= ⊛,∅ vi ̸= ⊛,∅

χ ⊢ ⟨∅,. . .,vi,. . .,∅, e,... | ejust :- econs⟩ | C −→ χ ∧ χ′ ∧ C ⊢ ⊛

Fig. 9: Alternative concrete and concolic lazy semantics for default terms

Consider for instance a default term e := ⟨e1, e2, e3 | ejust :- econs⟩, where
e1 and e2 both evaluate to values that are neither empty nor a conflict, respec-
tively generating constraints C1 and C2. By following rule C-DefaultExpr,
concolically executing e would require concolically executing e3 and generating
its associated constraint C3, which would then be added to the path condi-
tion when applying rule C-DefaultExceptionsConflict. Further iterations
of concolic execution would therefore negate the last constraints in the path
condition, i.e., those in C3, while preserving C1 and C2. As any input satisfying
C1 ∧ C2 leads to e1 and e2 evaluating to non-empty nor conflict values, thus
raising a conflict, this approach would induce a number of redundant iterations
that is exponential in the number of constraints in C3. By instead adopting rule
C-DefaultExceptionsConflict-Lazy and stopping the execution after the
evaluation of e2, we therefore prune C3 from the path condition, thus reducing
the number of iterations needed.

Reorganizing Exceptions. By relying on the semantics presented in Fig. 9, con-
colic executions of default terms can therefore be greatly shortened if exceptions
evaluating to non-empty values are at the front of the exception list. Beyond not
evaluating additional exceptions, their corresponding symbolic constraints will
not be added to the path condition, thus reducing the size of the constraint tree
and the number of iterations needed for concolic execution to terminate.

To leverage this fact, one key observation is that the result of the evaluation
of a default term is independent of the evaluation order of the exception list. We
formalize this property in Th. 1, which states that swapping any two exceptions
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C-DefaultError-Early
e −→∗ χ′ ⊢ ⊛

χ ⊢ ⟨v1,. . .,vi, e,. . ., | ejust :- econs⟩ | C −→ χ ∧ χ′ ⊢ ⊛

Fig. 10: Alternative concolic semantics for conflict-inducing evaluations

results in evaluating the default term to the same value. This therefore allows to
use different evaluation orders depending on the program and current symbolic
state. In our implementation, which we describe in more detail in the next sec-
tions, we permute exceptions to group them depending on their free variables, a
technique reminiscent of constraint reordering introduced by Cadar et al. [8].

Theorem 1 (Independence of the exception evaluation order). If there
exists a default value v such that ⟨...,ei,. . .,ej,... | ejust :- econs⟩ −→∗ v,
then ⟨...,ej,. . .,ei,... | ejust :- econs⟩ −→∗ v

Pruning Non-Conflict Path Conditions. As a last optimization, we present in
Fig. 10 an alternate formulation of rule C-DefaultError, which applies when
evaluating an exception yields a conflict value. If χ ⊢ ⟨e1,. . .,ei, e, ... | ejust :-
econs⟩ −→∗ χ ⊢ ⟨v1,. . .,vi, e, ... | ejust :- econs⟩ | C, and e −→∗ χ′ ⊢ ⊛, then
the application of rule C-DefaultError will add both C and χ′ to the path
condition. We observe however that this will lead to redundant executions, as
any input satisfying χ′ will lead to e evaluating to ⊛. Pruning C from the path
condition thus avoids unneeded concolic exploration, which we formally capture
through rule C-DefaultError-Early.

This rule directly derives from Th. 1; indeed, the rule C-DefaultError-
Early is conceptually equivalent to reorganizing the exception list to place e
at the head of the list, and then applying C-DefaultError. This is where
the need for differentiating between the path condition χ and local constraint C
arises: while constraints corresponding to the evaluation of earlier exceptions can
be safely dropped, the path condition up to this default term must be preserved.

Implementation. CUTECat implements the lazy evaluation of exceptions, as
well as exception reorganization to order exceptions according to their sets of
free variables. Pruning non-conflict path conditions is trickier to implement while
following a DFS exploration strategy. A key invariant of DFS exploration is that,
during a concolic iteration, the previous path condition (used to generate the
current input) is a prefix of the current path condition up to the negated con-
straint. This does not hold with rule C-DefaultError-Early, as the local
constraint C is dropped from the path condition. We leave the study of alterna-
tive exploration strategies and their impact as future work.

4.2 Generating Human-compatible Testcases

While many testcases might be equivalent from a semantic perspective (i.e.,
following the same program path), some might be easier to review by lawyers
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and humans in general. Consider for instance the constraint ¬(x ≤ $10, 000),
used in our running example to determine whether a household is in the low-
income category. As we have seen in Sec. 3, Z3 might generate x = $10, 000.01
as a testcase. When crafting testcases, lawyers would instead lean towards round
numbers, e.g., x = $11, 000, which would be easier to use when redoing manual
computations of legal statutes to compare them to the implementation’s output.
To mimick this behavior, CUTECat therefore provides heuristics attempting to
generate semantically equivalent, “human-friendlier” testcases.

To do so, we rely on the encoding of optional constraints in the solver, dubbed
“soft constraints” [59]. Z3 natively allows to combine SMT reasoning with solving
optimization objectives, including the specification of soft constraints; however,
we encountered significant slowdowns when attempting to use this feature, rais-
ing scalability issues, that have been reported to Z3 developers. We posit that this
is due to non-linearity in our soft-constraints – e.g., when specifying x%100 = 0
– and in our rounding function defined in Sec. 3. We instead adopt an alternative
approach, by implementing custom soft constraints through multiple queries to
the solver. Concretely, when an iteration of concolic execution terminates and
a new path condition C is generated, we first query Z3 to check whether C is
satisfiable. If so, we further query Z3 by iteratively refining C with additional
constraints forcing human-friendlier input generation.

Our current soft constraints particularly target monetary inputs. We first
attempt to force such inputs to be multiples of 100. If impossible, we then try
with multiples of 10, and finally with integers, aiming to prevent the use of cents.
Empirically, these constraints have a significant impact: as monetary amounts
are encoded at the cent level, Z3 frequently returns instances with cents, which
are less readable and less pleasant to use when computing by hand, especially
when percentages and rounding are involved. This paves the way for further
improvements to CUTECat’s usability; beyond monetary inputs, we envision
the development of a lawyer-friendly custom configuration language, enabling
the specification of preferred soft constraints depending on needs and usecases.

4.3 Pattern-Matching Case Folding

The Catala language supports simple pattern matching on the constructors of
algebraic datatypes. By default, CUTECat’s interpretation of pattern matching
considers each case of the pattern matching as a different branch. That way, the
logic of the pattern matching is materialized in the constraint tree itself, and the
engine is tasked with successively trying each branch. However, we have noticed
that this approach can be highly inefficient in existing Catala codebases.

Consider for example the snippet in Fig. 11, extracted from the Catala imple-
mentation of the French housing benefits. At lines 5-13, this program performs
a match on the 9 variants of a sum type representing geographic areas of France
(mainland, or overseas territories). To analyze this program, a naive implemen-
tation of our concolic interpreter would therefore consider 9 different, disjoint
branches, leading to 9 distinct iterations.
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1 scope HousingBenefitsForRentals:
2 exception definition family_rate
3 under condition
4 (match area with
5 -- Guadeloupe: true
6 -- Martinique: true
7 -- LaRéunion: true

8 -- Mayotte: true
9 -- SaintBarthélemy: true

10 -- SaintMartin: true
11 -- Guyane: false
12 -- Métropole: false
13 -- SaintPierreEtMiquelon: false)
14 consequence equals ...

Fig. 11: French housing benefits case where pattern case folding is beneficial

Here however, the arms of several cases are identical; patterns can be con-
joined to only create 2 branches, one corresponding to cases returning true, the
other to cases returning false. Doing so heavily reduces the size of the path
constraint tree; in more realistic examples, performance gains can be significant
when such patterns appear deep inside expressions, requiring long concolic exe-
cutions. We implemented a case folding optimization for pattern matching inside
CUTECat, folding similar cases by considering the disjunction of their patterns.

4.4 SMT-Solving Optimizations

Trivial constraint simplification. The path constraints taken into account during
the concolic execution can sometimes be trivial. Indeed, some conditions do
not depend on input variables, or are compilation artifacts from the translation
of the source code into the default calculus, where tautological conditions are
sometimes added in default expressions. Negating these trivially true constraints
in the hope of exploring other execution paths is pointless, as the new constraint
given to the solver will be trivially false, and therefore unsatisfiable.

To avoid this, we query the SMT solver to simplify constraints before they
are added in the path, and then remove trivial constraints statically. This avoids
spurious calls to the SMT solver. Additionally, we perform a linear check for triv-
ial unsatisfiability, by checking whether the newest constraint is a negation of a
previous one. This last technique is well known by the concolic solver community,
and already mentioned in the seminal work of Sen et al. [51].

Incremental SMT solving. Z3 provides incremental solving capabilities, where
sets of constraints can be incrementally added or removed through stack-based
push and pop operators. When popping the stack, the solver backtracks to an
earlier proof state, only removing lemmas learned between push and pop and
avoiding reproving many facts. We implemented support for incremental solving,
pushing a new stack for each element in the path condition. As CUTECat’s
exploration strategy is currently fixed to depth-first search (DFS), incremental
solving is particularly appealing: constraints are naturally changed in a last-in-
first-out fashion, corresponding to a stack-based data structure.

5 Evaluating CUTECat

We now turn to our experimental evaluation of CUTECat. We first quantify the
impact of the optimizations described in Sec. 4, relying on four Catala projects
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predating this work (Sec. 5.1). We then discuss CUTECat’s ability to identify
conflicts (Sec. 5.2), before evaluating CUTECat on the largest Catala program up
to this day, namely, an implementation of the French Housing Benefits (Sec. 5.3).
All experiments have been performed on a desktop machine featuring an Intel
Core i7-12700 and 128GB of DDR5 RAM (although we have never seen CUTE-
Cat use more than 1GB), running Ubuntu 24.04.1, OCaml 4.14.1 and Z3 4.12.5.

5.1 Evaluating CUTECat’s Optimizations

Benchmarks Overview. To evaluate the performance of CUTECat and its opti-
mizations, we have selected four different, real-world Catala programs as bench-
marks for our evaluation. These programs predate our implementation of CUTE-
Cat, and have been written by third-party, experienced Catala developers. One
benchmark corresponds to the implementation of a fragment of Section 132 of
the US Tax Code, defining qualified employee discounts. Other benchmarks im-
plement diverse bodies of law in France: one codifies minimum salary (SMIC),
another the computation of a family quotient used in the income tax computa-
tion (Family Quotient). The last benchmark computes the housing benefits in
the rental case, where additional restrictions have been made: households are
located in mainland France and contain less than 10 children. These bench-
marks reflect multiple facets of the law, and therefore exhibit diverse encodings
in Catala; we provide quantitative details about them in Table 1, namely, the
lines of Catala code (including legal specification), the number of branching con-
structs they contain (default terms, if-then-else, pattern matches), and the size
of the compiled Python code. We particularly observe that the default terms
outnumber the other branching terms, arguing in favor of their importance.

Evaluation Metrics. To evaluate the completeness of concolic tools, a standard
approach is to measure the code coverage achieved. In our context, this is how-
ever hard to perform: the Catala interpreter does not provide any coverage mea-
surements, while results on compiled Catala code, e.g., in Python, are highly
unreliable. Indeed, on a small program for which we can manually determine all
possible execution paths, a single Python execution reaches a line coverage of
65%, while executing all program paths barely reaches 80%. We suspect that this
is due to a bloated translation of default logic into mainstream languages. Our
evaluation therefore focuses on analysis times, and on the number of testcases
generated. We defer a discussion of the completeness of CUTECat to Sec. 5.2.

Solver Calls and Generated Tests. We compare in Table 2 the number of solver
calls performed and the number of tests generated by CUTECat. These num-
bers are provided both for naive executions without any optimization enabled
and when all optimizations are enabled. The difference in generated tests evalu-
ates the impact of pruning redundant exploration paths through pattern match-
ing case folding; the difference in solver calls represents the additional impact
of our optimizations targeting the SMT encoding, i.e., our handling of triv-
ial constraints. While these optimizations lead to improvements on almost all
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Benchmark Section 132 SMIC Family Quotient Housing Benefits

Catala LOC 133 368 776 19655
nb(default terms) 15 17 46 251
nb(if-then-else) 3 0 24 171
nb(match) 2 0 14 139

Python LOC 343 586 1413 31826

Table 1: Statistics about the benchmarks used in the ablation study

Category Section 132 SMIC Family Quotient Housing Benefits

Optimizations None All None All None All None All

Solver Calls 41 24 138 138 13224 4142 355848 126147
Generated Tests 10 10 17 17 381 381 24995 17435

Table 2: Impact of optimizations on solver calls and generated tests

Options Section 132 SMIC Family Quotient Housing Benefits

Total Solve Total Solve Total Solve Total Solve

Standard 0.27s 0.23s 1.01s 0.85s 82.61s 69.46s 6002.03s 2262.38s
Incremental 0.02s 0.01s 0.08s 0.01s 5.21s 0.23s 4306.72s 69.88s

Table 3: Solver and total execution times, with and without incremental solving.

benchmarks (SMIC has no matches or trivial constraints, so it is not affected),
their precise impact heavily differs. Avoiding calls to solver when considering
trivial constraints is almost always beneficial; it reduces the number of calls up
to 3.2x for the family quotient benchmark. Conversely, pattern matching folding
only helps the housing benefits; other, smaller examples do not rely as much on
large pattern matching. The tables below provide a more detailed analysis of the
impact of individual optimizations.

Incremental Solving. We evaluate in Table 3 the gains provided by Z3’s incre-
mental mode (Sec. 4.4). To do so, we compare both the total execution times and
the solver execution times when running CUTECat. Similarly to other works [51],
our empirical results suggest that incremental solving is a cornerstone of efficient
concolic execution; it provides more than an order of magnitude improvement to
the solving times. On the smaller examples, these order-of-magnitude improve-
ments are also observed on the total running time of the concolic engine, as the
SMT solving dominates the running times. On larger programs, e.g., housing
benefits, CUTECat’s execution time is however dominated by running the con-
colic interpreter; solving constraints only represents 35% of the total time. On
this example, incremental solving is 32x faster than Z3’s default mode, leading
to a total gain of more than 35 minutes.

Ablation Study. To evaluate the impact of each evaluation, we perform an abla-
tion study and compare total running times for each optimization individually

https://github.com/pierregoutagny/catala-examples/blob/174aac026e46cc5cfaa657fed79cfb6aa88b746c/us_tax_code/section_132.catala_en
https://github.com/pierregoutagny/catala-examples/blob/174aac026e46cc5cfaa657fed79cfb6aa88b746c/smic/smic.catala_fr
https://github.com/pierregoutagny/catala-examples/tree/174aac026e46cc5cfaa657fed79cfb6aa88b746c/impot_revenu
https://github.com/pierregoutagny/catala-examples/tree/174aac026e46cc5cfaa657fed79cfb6aa88b746c/aides_logement
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Optimizations Section 132 SMIC Family Quotient Housing Benefits

None 0.27s ± 0.00 1.01s ± 0.01 82.61s ± 0.55 6002.03s ± 19.46
Lazy-default 0.27s ± 0.00 1.02s ± 0.01 84.31s ± 1.15 5995.01s ± 15.21
Exception packing 0.27s ± 0.00 0.98s ± 0.01 83.41s ± 1.58 6013.71s ± 22.12
Incremental 0.02s ± 0.00 0.08s ± 0.00 5.21s ± 0.04 4306.72s ± 77.78
Trivial 0.09s ± 0.00 0.99s ± 0.01 12.62s ± 0.11 4258.93s ± 22.88
Match folding 0.21s ± 0.00 0.99s ± 0.01 46.89s ± 0.54 4045.87s ± 21.30
Frontend opts. 0.17s ± 0.00 0.99s ± 0.00 38.20s ± 0.42 3538.32s ± 22.37
All 0.02s ± 0.00 0.08s ± 0.00 4.34s ± 0.07 2843.01s ± 15.02

Speedup 1250.00% 1162.50% 1803.46% 111.12%

Table 4: Ablation study for CUTECat optimizations. Average on eight runs, with
standard deviation displayed after ±.

against the bare implementation of CUTECat (without any optimization), and
all optimizations enabled at once. Results are presented in Table 4. We consider
the following optimizations: lazy-default and exception packing (Sec. 4.1), incre-
mental solving (Sec. 4.4), constraint simplifications (Sec. 4.4), pattern matching
case folding (Sec. 4.3), and frontend optimizations already offered by the Catala
compiler. They currently consist in partial evaluation of booleans, and simpli-
fication of trivial defaults, i.e., when there are no exceptions and the default
condition is a boolean value.

We observe that almost all optimizations provide noticeable performance
improvements, but with variability on benchmarks likely tied to variance in
their structure. For smaller programs where solving time dominates, the largest
improvements are due to incremental solving.

For housing benefits however, other optimizations reduce the total time by
an additional 25%. To better describe this example, we measure in Fig. 12 the
evolution of the number of tests generated through time. Findings include sev-
eral results previously observed: the optimizations prune the exploration tree
by removing redundant cases, and incremental solving significantly improves to-
tal execution time. Additionally, we observe a linear generation rate, suggesting
that concolic execution does not struggle to reach certain paths, which could
have been a shortcoming of less systematic approaches, e.g., black-box fuzzing.

Notably, optimizations related to default terms, i.e., lazy default and excep-
tion packing do not impact the running times of CUTECat. This is however
expected: these optimizations are only of interest when terms can return conflict
values. Our benchmarks only contain mature Catala programs, corresponding
to implementations of enacted laws. To the best of our knowledge, no corpus
of conflict-inducing Catala examples currently exists, making a precise evalua-
tion of these optimizations difficult. We however expect these optimizations to
shine when applied during development processes, as well as to identify possible
inconsistencies during the preparation of new legislation.

Soft Constraints. We evaluate the impact of using soft constraints in Table 5;
the evaluation is performed with all optimizations enabled. We only consider
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Fig. 12: Comparison of test generation rates on the housing benefits benchmark

Benchmark Section 132 Housing Benefits

All 0.02s ± 0.00 2843.01s ± 15.02
Soft. cons. 0.03s ± 0.00 2968.80s ± 16.90

Slowdown 50.00% 4.42%

Number of tests 10 17435
% sat soft cons. (multiples of 100) 100% 87.04%
% sat soft cons. (multiples of 10) N.A. 9.98%
% sat soft cons. (multiples of 1) N.A. 2.80%

Table 5: Impact of soft constraints

the Section 132 and housing benefits benchmarks, as our soft constraints target
monetary amounts given as inputs, which other examples do not have. On large,
representative Catala examples, we observe that the computational overhead of
using soft constraints is small. Additionally, the soft constraints are satisfied
for almost all cases, significantly improving the usability of CUTECat. Indeed,
87.04% of the 17435 generated testcases can be solved with a soft constraint en-
suring monetary amounts are multiples of 100, and additionally 9.98% and 2.80%
for the multiples of 10 and units, respectively. In total, only 30/17435 generated
testcases (0.17%) do not satisfy any soft constraint. Our encoding of soft con-
straints particularly benefits from incremental solving: they are only added to
a path condition proved satisfiable by the solver – which corresponds to refin-
ing an existing solution. Furthermore, incremental solving significantly reduces
solving time, minimizing the impact on CUTECat’s running time of calling the
solver several times on a given path. As such, we expect further extensions to
soft constraints to have a minor impact on CUTECat’s performance.
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5.2 Detecting Errors with CUTECat

We now aim to determine whether CUTECat is effective in detecting issues in
computational law implementations. Unfortunately, existing Catala codebases
are mature and implementing real-world, enacted laws; they are therefore highly
unlikely to exhibit such issues. To evaluate CUTECat’s completeness, we there-
fore turn to mutation testing [26] to automatically inject errors in Catala pro-
grams, thereby simulating coding mistakes or legislative imprecisions.

We apply mutation testing to our most complex example: housing benefits.
To do so, we first randomly select a default term in the program; we then either
remove a chosen number of exceptions (possibly leading to unhandled cases),
duplicate an exception (thus creating a conflict), or negate the default condition
of a default term (possibly leading to unhandled cases). We follow this process to
generate 20 new programs, which we manually inspect to confirm that mutations
introduced issues. In particular, we must ensure that the default term considered
is reachable, and that assumptions and conditions in other parts of the code do
not preclude the unhandled cases, or the execution of the conflicting exceptions.

CUTECat successfully identifies all 20 issues, providing concrete inputs to
identify problematic cases. On average, CUTECat requires 0.55 seconds to reach
the injected bug; this execution time leads us to believe that our tool would be
particularly suitable as part of continuous integration workflows, but also to
evaluate intended amendments to laws.

5.3 Case Study: Rental Housing Benefits

Our evaluation so far focused on a constrained case of the rental housing benefits,
considering only households located in mainland France and with less than 10
children. We chose to enforce these restrictions due to the multiple executions
required to evaluate different CUTECat settings, which already required more
than one hour each. In this section, we now explore the general, unconstrained
case of the rental housing benefits. With all optimizations enabled, CUTECat is
able to analyze this program in 6h37m, generating 186390 testcases. This process
generates 1338575 solver calls; the total solver time is 366s.

Interestingly, CUTECat’s analysis led to the discovery of a conflict error
in the existing implementation. The housing benefits are defined for various
cases, including when the flat is shared with other roommates, or when a single
bedroom is rented. However, an interpretation conflict can happen for people
claiming rental housing benefits if they are sharing a bedroom with roommates.
This conflict was previously manually discovered by Merigoux [35] during their
implementation of the housing benefits. Despite querying relevant public admin-
istrations, this case was deemed unlikely to happen, and no legal interpretation
was provided to resolve this ambiguity. No other errors have been found by
CUTECat on the rental housing benefits.

A manual inspection of the generated testcases revealed that the current
input space for the housing benefits is under-constrained. For example, some
testcases correspond to households located overseas and in housing zone 3 – but
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to the best of our knowledge, all overseas territories are defined to be in housing
zone 2. Such cases exemplify where expert knowledge from lawyers would be
beneficial: provided with indications about which inputs are well-formed, pro-
grammers can then restrict CUTECat’s search space through program assertions,
therefore speeding up the analysis.

Overhead of Concolic Execution. We now compare the overhead of the concolic
execution of CUTECat with the interpretation times of all the generated test-
cases. The reference Catala interpreter evaluates the 186390 generated tests in
1h29, meaning CUTECat has a 4.5x overhead. While large, this overhead is
not unexpected: the concolic interpreter instruments each expression evaluation
to collect symbolic constraints, and performs repeated calls to the SMT solver.
Prior work on concolic execution observed similar trends: for example, Yun et al.
[58] measure that KLEE [8] has up to a three order-of-magnitude overhead, while
our experimental results are in line with approaches focusing on reducing this
overhead [12, 46]. This leads us to believe that CUTECat’s scalability is compa-
rable to concolic tools in other languages; we nevertheless intend to perform a
deeper profiling of our interpreter to identify potential bottlenecks. This compar-
ison also allows us to sanity-check our implementation with respect to Catala’s
semantics: we confirmed that CUTECat and the Catala reference interpreter
agreed on all generated testcases. Furthermore, we can use those same testcases
to check whether all Catala backends have the same behavior on the case study.

6 Related Work

Concolic Execution. Concolic execution was introduced by the seminal works of
Godefroid et al. [21] and Sen et al. [51] almost two decades ago. Since then, it
has been applied to various programming languages [8, 9, 31, 34, 50]. We refer
the reader to the survey of Baldoni et al. [1] for an extensive coverage of concolic
and symbolic execution. As Catala has different features compared to traditional,
imperative programming languages, most of the advanced techniques mentioned
in the survey (memory encoding, loop summarization) are not relevant for our
work. Similarly, human-readability of generated tests is usually not an objective
of traditional concolic execution engines. However, Baldoni et al. [1] mention
that “the way high-level switch statements are compiled can significantly af-
fect the performance of path exploration”, echoing in an imperative setting the
need for an encoding similar to the pattern-matching case folding presented in
Sec. 4.3. Giantsios et al. [19] support pattern matching through a compilation
to a decision tree, which is the approach used to generate machine code [33].
In Sec. 4.3, we chose to implement a simpler approach as Catala currently sup-
ports matching against a single sum type. As we have mentioned in Sec. 5.2,
our mutation approach is lacking information to be reliable in user-constrained
cases, which required us to manually inspect mutated programs. To create an
analysis-oriented benchmarking suite for Catala programs, an interesting avenue
would be to rely on the program generation techniques of Vikram et al. [56].
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Formal Methods for the Law. Several approaches were previously proposed to
reason about default logic. Risch [48] and Cassano et al. [11] both define tableaux-
based approaches [25] to reason about propositional formulas expressed in de-
fault logic, while Schaub [49] and Linke and Schaub [30] propose query answering
methodologies for default logic propositions. By focusing on the underlying logic,
these works differ from our approach tailored to program verification, which em-
phasizes testcase generation and requires reasoning about numerical expressions
and program constructs such as structures or enumerations. In their compiler for
the French tax code, Merigoux et al. [38] have relied on coverage-guided fuzzing
with AFL [60] to improve the quality of a pre-existing test-suite. Their approach
however only generated 275 minimized testcases from a first generation of 30,000
cases. In contrast, CUTECat’s concolic-based approach allows to generate cases
exploring different execution paths, while reaching rare ambiguous or unhan-
dled situations. Monat et al. [41] and de Almeida Borges et al. [17] focus on
formalizing date-duration arithmetic and semantics of UTC time respectively,
with the former also analyzing date-related ambiguities in legal computations.
Our work currently only provides limited support for date operations, but could
build upon these formalizations to define suitable symbolic encodings.

7 Conclusion and Future Work

Legal expert systems implementing computational laws are pervasive, and faith-
fully translating the law into code is error-prone. To alleviate this issue, we
proposed CUTECat, a concolic execution tool targeting computational law im-
plementations in the Catala language. CUTECat relies on a novel concolic se-
mantics for default terms, and is equipped with several optimizations improving
its scalability and usability by lawyers.

CUTECat scales to Catala codebases implementing real-world French and
US laws, generating hundreds of thousands of unique testcases in less than seven
hours of CPU time. We believe this paper takes a step towards the use of for-
mal methods during legislative processes. Our future work includes tailoring
CUTECat’s pipeline and interface for lawyers through interdisciplinary experi-
mentation. We also plan to discuss additional usecases for CUTECat with law
experts; namely, we believe CUTECat could be used to improve state-of-the-art
computer-assisted tax teaching techniques [29].
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