
A theory of lists with combinators for SMT solvers
Submission for the POPL 2026 Student Research Competition

PIERRE GOUTAGNY∗, Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, France

1 INTRODUCTION
In order to solve a wide variety of problems, SMT solvers need theories to reason about complex
data structures and operations. In particular, some implement efficient encodings of large collections
of data, such as arrays with index-based operations [6], and strings with structural operations like
concatenation or regular expressions [9]. This is, however, not the case for lists defined as recursive
algebraic datatypes, equipped with the usual list operations found in functional programs. These
operations can be written as compositions of fundamental combinators (fold, map, filter, etc.)
that manipulate the content of lists without explicitly indexing their elements.
While state-of-the-art SMT solvers do provide ways to reason about lists, we argue that they

suffer from significant limitations, and that they do not leverage the structure of compositional
programs on lists to its full extent. In this work, we explore the strengths and limitations of current
solvers capable of reasoning on collections of values, then introduce our first steps towards a new
approach specifically tailored to lists with combinators, and fast unsatisfiability checking.

2 BACKGROUND AND RELATEDWORK
Modern SMT solvers have several ways of representing lists, or list-like structures. However, the
different approaches suffer from (sometimes prohibitive) limitations.

Algebraic datatypes and sequences. Solvers such as CVC5 or Z3 define a theory of sequences
[1; 4; 5] built upon an underlying theory of algebraic datatypes. Lists are therefore built recursively
with a nil constructor, and a cons or concat constructor. Most operations over lists can then be
defined recursively, as in ML-like languages. This encoding enables writing constraints on lists of
symbolic size, and constraints on the contents of these lists.

However, solving these can be inefficient with very large lists, especially in unsatisfiable instances,
and lead to timeouts. Indeed, current SMT solvers do not implement inductive reasoning, which
would help solve recursively defined constraints. Instead, they consider a candidate, then ‘unroll’ the
definitions for it. Without a proper abstraction for list lengths, the solver may resolve to generating
candidate lists of increasing lengths, and eventually time out after trying many list lengths.

String theory. Some solvers, such as Z3str4 [9], provide an efficient theory of strings, where strings
are first-class elements, and not built recursively. However, these theories cannot be leveraged
directly to get a theory of lists.

First, strings are made of letters that come from a finite alphabet, which is enough to represent
ASCII or Unicode characters, but not the infinite set of integers.

Additionally, operations on strings, such as concatenation, slicing, regular expression matching,
etc., usually rely on the structure of the string. The only operation on a string’s contents in Z3’s
theory [3], for instance, is replacing a substring with another one. In particular, string theories do
not define operations resembling a fold. However, string solvers like Z3str4 can efficiently handle
strings of symbolic lengths with the help of a Length Abstraction Solver.
∗ACM Student Member No. 2155597. Graduate student advised by Aymeric Fromherz and Raphaël Monat.

Author’s address: Pierre Goutagny, Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000, Lille, France,
pierre.goutagny@inria.fr.

HTTPS://ORCID.ORG/0000-0003-0876-7188
https://orcid.org/0000-0003-0876-7188

2 Pierre Goutagny

Arrays. In the SMT theory of arrays, arrays are handled with a store and a select function
[6][2, Fig. 3.3]. They can be indexed by any type, and have elements of any type, which essentially
makes them functions. Because of this, arrays don’t have an intrinsic length, and constraints must
explicitly state to which subset of the domain they apply. On small examples, this approach seems
to work, and even correctly answer unsat on some unsatisfiable constraints. However, since the
model for an array is a function, retrieving all elements from a large array becomes inefficient.

Lists of concrete lengths. Finally, some solvers, such as Rosette [10], only allow lists of symbolic
elements if they have a concrete length. With this approach, Rosette can lift Lisp-like concrete list
operations (e.g. cdr, car) to lists of symbolic elements, and thus benefit from functions defined
in the underlying Racket language. However, the user becomes responsible for finding suitable
concrete lengths for symbolic lists.

3 OUR APPROACH
Our approach aims to combine strategies from string solvers, that reason well on lengths, with
the ability of sequence solvers to handle integers and other data types. Using a theory of lists as
abstract values with combinators, we describe a general method that alternates between finding
suitable lengths, and finding a model for lists of these concrete lengths. To decrease solving time,
we define rewriting-based optimizations that leverage the structure of list operation composition,
and explore heuristics to reject unsatisfiable instances early.

3.1 Manipulating abstract lists with combinators
In our theory, lists are abstract values that are neither constructed from, nor breakable into, a
head and tail. With this approach, the fundamental list operations are not nil, cons, and pattern
matching, like in many ML-like languages. Rather, they are combinators that apply to whole lists,
and are not defined recursively in the language: fold, map, length, filter.
Using this design choice, unrolling definitions is not always necessary. In particular, it allows

us to reason on list lengths independently from their shape or content. It also becomes easier to
recognize patterns and create optimizations that are specific to list operations, especially using
rewriting. We show how to leverage these properties below.

3.2 Solver architecture
The main loop of the solver is composed of two phases: a Length Solver to find acceptable list
lengths, and a Fixed-length List Solver to find lists of the given lengths.

Length Solver. In the first phase, the Length Solver starts by taking constraints over lists, and
extracting arithmetic constraints over list lengths. For example, length (map f l) = 2 is trans-
lated into |𝑙 | = 2, where |𝑙 | is a symbolic integer variable representing l’s length. The Length Solver
can then call an SMT solver to solve these constraints. If they are unsatisfiable, that is if no lengths
can satisfy the length constraints, then no list can satisfy the list constraints. If they are satisfiable,
the Length Solver gets a concrete model for possible list lengths.

Fixed-length List Solver. In the second phase, the Fixed-length List Solver takes as input the
problem’s constraints, and the length model described above. It encodes a list l of concrete length
n as n SMT variables 𝑙1, . . . , 𝑙n. The list constraints are then encoded in the SMT solver as follows:

• length l is encoded as the SMT literal representing concrete length n.
• map f l is encoded as the conjunction of assertions mapping each 𝑓 (𝑙i) to a new variable
𝑙
map
i . For example, when encountering (map (fun x -> x+1) l), and knowing |𝑙 | ↦→ 3 in
the length model, the solver generates

(
𝑙
map
1 = 𝑙1 + 1

)
∧
(
𝑙
map
2 = 𝑙2 + 1

)
∧
(
𝑙
map
3 = 𝑙3 + 1

)
.

A theory of lists with combinators for SMT solvers 3

• fold f i l is encoded as the ‘unrolling’ of the fold operation. For example, (fold (+) 0 l),
where |𝑙 | ↦→ 3 in the length model, is encoded as (((0 + 𝑙1) + 𝑙2) + 𝑙3).

After this encoding step, the Fixed-length List Solver calls an SMT solver with the generated
constraints. If the constraints are satisfiable and the SMT solver returns a model with values for
every element of l, the list solver can stop and return a model for l using these elements. If the
constraints are unsatisfiable, then the Length Solver must generate a new length model, if one is
available, while possibly factoring in the Fixed-length List Solver’s negative result.

Length bounds and timeouts. If, at some point, every satisfying length model has been tried, and
none leads to a satisfying model for list elements, then the list solver can return unsat. Otherwise,
it may run indefinitely, or be stopped by a timeout and answer unknown.

3.3 Optimizations and heuristics
The method described above is designed to work in the general case, and will always eventually
return sat, unsat, or unknown if a timeout is set. However, this is not always the most efficient
method, especially for large or unsatisfiable problems. In this section, we propose optimizations
and heuristics for these cases.

Composition rules. Using the fact that our language has a limited set of pure list operations, it
is possible to write general rewriting rules to reduce solving time. For instance, it is possible to
rewrite terms of the shape map f (map g l) as map (fun x -> f (g x)) l. For a list 𝑙 of length
𝑛, using the Fixed-length List Solver on the left-hand side will create 𝑛 constraints to encode map g,
then 𝑛 more to encode map f. On the right-hand side, the same approach only needs 𝑛 constraints.
Similar rewritings are possible for compositions of fold, map, length, and filter. We plan to

study the choice of the sub-expressions to rewrite and the order of the rewritings, as well as their
impact on performance.

Unsatisfiable problems. The composition simplifications described above are designed to apply in
many cases, and reduce the overall solving time. However, if list lengths are bounded, the domain
of the Length Solver grows exponentially with the number of lists, and if they are unbounded, the
solver may never terminate. For instance, if a problem contains 𝑁 lists of length smaller than 𝐵,
there are 𝐵𝑁 possible length models. In the worst case, if no length model allows for a satisfiable
Fixed-length problem, the Fixed-length List Solver will be called 𝐵𝑁 times before returning unsat.
We are therefore interested in heuristics that will detect unsatisfiable problems as early as possible
through state-space reduction.

4 EXPERIMENTAL EVALUATION AND USE CASE
To verify our approach empirically, we are developing an implementation of this ongoing work in
OCaml, relying on Z3 [5] as our SMT solver backend. Using both purpose-made and real-world
programs that manipulate lists, we aim to perform an experimental evaluation of the general
approach described above, compare it with state-of-the-art solvers, and identify the practical impact
of each heuristics.

Lastly, our goal is eventually to integrate this solver in CUTECat [7], our concolic testing engine
for implementations of computational laws. Implementing fiscal or social benefits law, for instance,
can require reasoning on lists of individuals, periods of employment, tax brackets, etc. Using our
list solver would therefore enable the verification of real-world programs that implement these
laws in the Catala domain-specific language [8].

4 Pierre Goutagny

REFERENCES
[1] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. Cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part I (2022) (Lecture Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). 415–442. https:
//doi.org/10.1007/978-3-030-99524-9_24

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2025. The SMT-LIB Standard: Version 2.7. Technical Report.
Department of Computer Science, The University of Iowa. https://smt-lib.org/papers/smt-lib-reference-v2.7-r2025-
07-07.pdf

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2025. SMT-LIB website — Unicode Strings. https://smt-lib.org/theories-
UnicodeStrings.shtml

[4] Nikolaj Bjørner, Vijay Ganesh, Raphael Michel, and Margus Veanes. 2012. An SMT-LIB Format for Sequences and
Regular Expressions. (2012).

[5] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. https://doi.org/10.1007/978-3-540-78800-
3_24

[6] Leonardo de Moura and Nikolaj Bjørner. 2009. Generalized, Efficient Array Decision Procedures. In 2009 Formal
Methods in Computer-Aided Design (2009-11). 45–52. https://doi.org/10.1109/FMCAD.2009.5351142

[7] Pierre Goutagny, Aymeric Fromherz, and Raphaël Monat. 2025. CUTECat: Concolic Execution for Computational
Law. In Programming Languages and Systems (Cham, 2025), Viktor Vafeiadis (Ed.). Springer Nature Switzerland, 31–61.
https://doi.org/10.1007/978-3-031-91121-7_2

[8] Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko. 2021. Catala: A Programming Language for the Law. 5
(2021), 77:1–77:29. Issue ICFP. https://doi.org/10.1145/3473582

[9] Federico Mora, Murphy Berzish, Mitja Kulczynski, Dirk Nowotka, and Vijay Ganesh. 2021. Z3str4: A Multi-armed
String Solver. In Formal Methods (Cham, 2021), Marieke Huisman, Corina P˘ asăreanu, and Naijun Zhan (Eds.). Springer
International Publishing, 389–406. https://doi.org/10.1007/978-3-030-90870-6_21

[10] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (2014-06-09).
530–541. https://doi.org/10.1145/2594291.2594340

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://smt-lib.org/papers/smt-lib-reference-v2.7-r2025-07-07.pdf
https://smt-lib.org/papers/smt-lib-reference-v2.7-r2025-07-07.pdf
https://smt-lib.org/theories-UnicodeStrings.shtml
https://smt-lib.org/theories-UnicodeStrings.shtml
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/978-3-031-91121-7_2
https://doi.org/10.1145/3473582
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1145/2594291.2594340

	1 Introduction
	2 Background and related work
	3 Our approach
	3.1 Manipulating abstract lists with combinators
	3.2 Solver architecture
	3.3 Optimizations and heuristics

	4 Experimental evaluation and use case
	References

