DUELIST: A THEORY OF LISTS WITH COMBINATORS FOR SMT SOLVERS
Pierre Goutagny* Aymeric Fromherz, Raphaéel Monat

plerre.goutagnyainria.fr Inria
List constraint from French housing benefits Position among related work
let child custody = Solver combinators fast UNSAT domain
List.fold (+) o | , SMT-LIB Lists [1] | recursive X oo
(Llst.mgcp)u(aﬂ_lz ihlld -> match child.custody with SMT-LIB Seq [2] | implem. dep. X o
Shared -> 0.5 SMT-LIB String [4] structural v finite
None -> o) ' SMT-LIB Array [6] index-based v/ co
children) SyGus [7] recursive X 00
in (child_custody > child_custody_threshold) Rosette [8] recyrsive N/A o
&5 List.length children > child _count_threshold Our goal native support v oo
Combinator language Solver architecture
UNSAT feedback
SMT-LIB syntax + list combinators:
Suppored: fold nap, Length
« Unsupported: cons, concat, init
* Possible extension: filter
SMT Solver

Over-approximating solver Under-approximating solver
Over-approx(user constraints u feedback): Under-approx(constraints):
- Infer necessary constraints that over-approximate the problem - Encode (partially concretized) list constraints in SMT solver
« Query the SMT solver: « Call the solver:
If UNSAT: If SAT with a model: — If SAT with a model, return SAT with a list model
return UNSAT - use It to concretize some constraints, and - If UNSAT, send feedback to refine the over-approximation
- send to the Under-approximating solver

Element-wise encoding

Length Solver

Lists without other abstractions are encoded as |[| SMT variables.

If |[| » 3,
-lisencoded as L, L, ;

* Infer list length constraints from input, including combinators
* If user constraints are SAT, then length constraints are SAT

- If length constraints are SAT, the SMT solver returns a model for fold fil=f(f(fil)L)L
possible list lengths (concretization) -map f lis encoded with m,, m,, m, using an additional constraint:
- 1f C = Len (map f [) > 2, then InferLen(C) = |l| > 2, and a concrete length model (my = f L) n(my=fL)A(my = f L)

can be |l| » 3

- InferLen(running example) = |children| > child_count_threshold . .
Rewriting rules

Unreachable value To reduce the number of SMT variables, list constraints can be
rewritten using the compositional properties of combinators.

Return UNSAT early if a function cannot reach its expected result.
,, *map f (map g l) » map (f-qg)l

Since the domain of (max 0) is positive integers, (fold max 0 [= -1) must be UNSAT. «fold fi(mapgl) » fold (Aax. f a(g x)) il
List folding abstraction Evaluation plan
Given fold f I [, if there is a neutral padding element e satisfying Catala [3] programs .. SyGuS-Comp problems
|
Vx,3hd : (f | hd = X) A (f X e = X)’ | Encode real—wlorld problems
then [has the shape [hd,e,...,e],and fold fil=f I hd. Common list language
77 Generate problems for existing solvers
fold(+)0l=fold (+)0[sumlO,...,0]solhasshape]s,0,...,0]suchthatsum [=s. ¥ ¥ 3
Z3 [5] Rosette [8]
| | |
[1] Barrett, C., Fontaine, P, Tinelli, C.: The SMT-LIB standard: Version 2.7 (2025), URL SMT-LIB.org Call DuelList Call existing solvers + measure

+
»| Results & resource usage k

[2] Bjgrner, N., Ganesh, V., Michel, R., Veanes, M.: An SMT-LIB Format for Sequences and Regular Ex-
pressions (2012)
[3] Merigoux, D., Chataing, N., Protzenko, J.: Catala: A programming language for the law (2021),

DOI: 160.1145/3473582 .
[4] Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: A Multi-armed String Solver. 7] Raghothaman, M., Reynolds, A., Udupa, A.: The SyGuS Language Standard Version 2.0 (2021), URL

In: Formal Methods (2021), DOI: 16.1007/978-3-030-90870-6_21 https://sygus-org.github.io/assets/pdf/SyGuS-IF_2.1.pdf
[5] de Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: TACAS (2008), DOI: 160.1007/ [8] Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host languages. In:
978-3-540-78800-3 24 PLDI (2014), DOI: 16.1145/2594291.2594340

[6] de Moura, L., Bjgrner, N.: Generalized, efficient array decision procedures. In: FMCAD (2009), +yniv. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
DOI: 10.1109/FMCAD. 2009.5351142

pierre.goutagny@inria.fr
SMT-LIB.org
https://doi.org/10.1145/3473582
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/FMCAD.2009.5351142
https://sygus-org.github.io/assets/pdf/SyGuS-IF_2.1.pdf
https://doi.org/10.1145/2594291.2594340

