
DUELIST: A THEORY OF LISTS WITH COMBINATORS FOR SMT SOLVERS
Pierre Goutagny*, Aymeric Fromherz, Raphaël Monat

pierre.goutagny@inria.fr Inria

List constraint from French housing benefits

let child_custody =
List.fold (+) 0
(List.map (fun child -> match child.custody with

| Sole -> 1
| Shared -> 0.5
| None -> 0)

children)
in (child_custody > child_custody_threshold)
&& List.length children > child_count_threshold

Position among related work

Solver combinators fast UNSAT domain
SMT-LIB Lists [1] recursive 7 ∞
SMT-LIB Seq [2] implem. dep. 7 ∞
SMT-LIB String [4] structural 3 finite
SMT-LIB Array [6] index-based 3 ∞
SyGuS [7] recursive 7 ∞
Rosette [8] recursive N/A ∞
Our goal native support 3 ∞

Combinator language

SMT-LIB syntax + list combinators:
• Supported: fold, map, length
• Unsupported: cons, concat, init
• Possible extension: filter

Solver architecture

user
constraints

Over-approximating
solver

Under-approximating
solver SAT(model)

UNSAT

SMT Solver

concretized
user constraints

feedback

Under-approximating solver

Under-approx(constraints):
• Encode (partially concretized) list constraints in SMT solver
• Call the solver:
– If SAT with a model, return SAT with a list model
– If UNSAT, send feedback to refine the over-approximation

Element-wise encoding
Lists without other abstractions are encoded as |𝑙| SMT variables.

If |𝑙| ↦ 3,
• 𝑙 is encoded as 𝑙1, 𝑙2, 𝑙3
• fold 𝑓 𝑖 𝑙 = 𝑓 (𝑓 (𝑓 𝑖 𝑙1) 𝑙2) 𝑙3
• map 𝑓 𝑙 is encoded with 𝑚1, 𝑚2, 𝑚3 using an additional constraint:

(𝑚1 = 𝑓 𝑙1) ∧ (𝑚2 = 𝑓 𝑙2) ∧ (𝑚3 = 𝑓 𝑙3)

Rewriting rules
To reduce the number of SMT variables, list constraints can be
rewritten using the compositional properties of combinators.

• map 𝑓 (map 𝑔 𝑙) → map (𝑓 ∘ 𝑔) 𝑙
• fold 𝑓 𝑖 (map 𝑔 𝑙) → fold (𝜆𝑎𝑥. 𝑓 𝑎 (𝑔 𝑥)) 𝑖 𝑙

Over-approximating solver

Over-approx(user constraints ∪ feedback):
• Infer necessary constraints that over-approximate the problem
• Query the SMT solver:
If UNSAT:
return UNSAT

If SAT with a model:
– use it to concretize some constraints, and
– send to the Under-approximating solver

Length Solver
• Infer list length constraints from input, including combinators
• If user constraints are SAT, then length constraints are SAT
• If length constraints are SAT, the SMT solver returns a model for
possible list lengths (concretization)

• If 𝐶 ≡ len (map 𝑓 𝑙) > 2, then InferLen(𝐶) ≡ |𝑙| > 2, and a concrete length model
can be |𝑙| ↦ 3
• InferLen(running example) ≡ |𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛| > 𝑐ℎ𝑖𝑙𝑑_𝑐𝑜𝑢𝑛𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Unreachable value
Return UNSAT early if a function cannot reach its expected result.

Since the domain of (max 0) is positive integers, (fold max 0 𝑙 = −1)must be UNSAT.

List folding abstraction
Given fold 𝑓 𝑖 𝑙, if there is a neutral padding element 𝑒 satisfying

∀𝑥, ∃ℎ𝑑 ∶ (𝑓 𝑖 ℎ𝑑 = 𝑥) ∧ (𝑓 𝑥 𝑒 = 𝑥),
then 𝑙 has the shape [ℎ𝑑, 𝑒, … , 𝑒], and fold 𝑓 𝑖 𝑙 = 𝑓 𝑖 ℎ𝑑.

fold (+) 0 𝑙 = fold (+) 0 [sum 𝑙, 0, … , 0] so 𝑙 has shape [𝑠, 0, … , 0] such that sum 𝑙 = 𝑠.

Evaluation plan

Catala [3] programs … SyGuS-Comp problems

Common list language

…Z3 [5] Rosette [8]

Encode real-world problems

Generate problems for existing solvers

Results & resource usage

Call existing solvers + measureCall DueList[1] Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.7 (2025), URL SMT-LIB.org
[2] Bjørner, N., Ganesh, V., Michel, R., Veanes, M.: An SMT-LIB Format for Sequences and Regular Ex-

pressions (2012)
[3] Merigoux, D., Chataing, N., Protzenko, J.: Catala: A programming language for the law (2021),

DOI: 10.1145/3473582
[4] Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: A Multi-armed String Solver.

In: Formal Methods (2021), DOI: 10.1007/978-3-030-90870-6_21
[5] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS (2008), DOI: 10.1007/

978-3-540-78800-3_24
[6] de Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In: FMCAD (2009),

DOI: 10.1109/FMCAD.2009.5351142

[7] Raghothaman, M., Reynolds, A., Udupa, A.: The SyGuS Language Standard Version 2.0 (2021), URL
https://sygus-org.github.io/assets/pdf/SyGuS-IF_2.1.pdf

[8] Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host languages. In:
PLDI (2014), DOI: 10.1145/2594291.2594340

*Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France

pierre.goutagny@inria.fr
SMT-LIB.org
https://doi.org/10.1145/3473582
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/FMCAD.2009.5351142
https://sygus-org.github.io/assets/pdf/SyGuS-IF_2.1.pdf
https://doi.org/10.1145/2594291.2594340

