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List constraint from French housing benefits Position among related work
let child custody = Solver combinators fast UNSAT domain
List.fold (+) o | , SMT-LIB Lists [1] | recursive X oo
(Llst.mgcp)u(aﬂ_lz ihlld -> match child.custody with SMT-LIB Seq [2] | implem. dep. X o
Shared -> 0.5 SMT-LIB String [4] structural v finite
None -> o) ' SMT-LIB Array [6] index-based v/ co
children) SyGus [7] recursive X 00
in (child_custody > child_custody_threshold) Rosette [8] recyrsive N/A o
&5 List.length children > child _count_threshold Our goal native support v oo
Combinator language Solver architecture
UNSAT feedback
SMT-LIB syntax + list combinators:
Suppored: fold nap, Length
« Unsupported: cons, concat, init
* Possible extension: filter
SMT Solver

Over-approximating solver Under-approximating solver
Over-approx(user constraints u feedback): Under-approx(constraints):
- Infer necessary constraints that over-approximate the problem - Encode (partially concretized) list constraints in SMT solver
« Query the SMT solver: « Call the solver:
If UNSAT: If SAT with a model: — If SAT with a model, return SAT with a list model
return UNSAT - use It to concretize some constraints, and - If UNSAT, send feedback to refine the over-approximation
- send to the Under-approximating solver

Element-wise encoding

Length Solver

Lists without other abstractions are encoded as |[| SMT variables.

If |[| » 3,
-lisencoded as L, L, ;

* Infer list length constraints from input, including combinators
* If user constraints are SAT, then length constraints are SAT

- If length constraints are SAT, the SMT solver returns a model for fold fil=f(f(fil)L)L
possible list lengths (concretization) -map f lis encoded with m,, m,, m, using an additional constraint:
- 1f C = Len (map f [) > 2, then InferLen(C) = |l| > 2, and a concrete length model (my = f L) n(my=fL)A(my = f L)

can be |l| » 3

- InferLen(running example) = |children| > child_count_threshold . .
Rewriting rules

Unreachable value To reduce the number of SMT variables, list constraints can be
rewritten using the compositional properties of combinators.

Return UNSAT early if a function cannot reach its expected result.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, *map f (map g l) » map (f-qg)l

Since the domain of (max 0) is positive integers, (fold max 0 [ = -1) must be UNSAT. «fold fi(mapgl) » fold (Aax. f a(g x)) il
List folding abstraction Evaluation plan
Given fold f I [, if there is a neutral padding element e satisfying Catala [3] programs .. SyGuS-Comp problems
|
Vx,3hd : (f | hd = X) A (f X e = X)’ | Encode real—wlorld problems
then [ has the shape [hd,e,...,e],and fold fil=f I hd. Common list language
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fold(+)0l=fold (+)0[sumlO,...,0]solhasshape]s,0,...,0]suchthatsum [ =s. ¥ ¥ 3
Z3 [5] Rosette [8]
| | |
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