
CUTECat
Generating Testcases for Computational Laws through Concolic Execution

Pierre Goutagny1 Aymeric Fromherz2 Raphaël Monat1

Catala Seminar, March 10, 2025
1Inria Lille, 2Inria Paris

1/28

Introduction

In this talk

• Program that encode laws
• What bugs these programs can have
• How Catala prevents some of them
• How I can detect them before they even happen

2/28

Computational law

• Computational laws encode algorithms: taxes, social benefits, etc.
• Administrations implement them as programs
• Critical: e.g. French military payroll system Louvois: 120k military personnel
over- or under-paid, overpayments totalling 545M € to pay back

3/28

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the
income.

Article 2

default case

The fixed percentage mentioned at article 1
is 20%.

Article 3

exception

If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the
percentage mentioned at article 1 is 15%.

Default logic

4/28

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the
income.

Article 2

default case

The fixed percentage mentioned at article 1
is 20%.

Article 3

exception

If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the
percentage mentioned at article 1 is 15%.

Default logic

4/28

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the
income.

Article 2 default case

The fixed percentage mentioned at article 1
is 20%.

Article 3

exception

If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the
percentage mentioned at article 1 is 15%.

Default logic

4/28

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the
income.

Article 2 default case

The fixed percentage mentioned at article 1
is 20%.

Article 3

exception

If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the
percentage mentioned at article 1 is 15%.

Default logic

4/28

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the
income.

Article 2 default case

The fixed percentage mentioned at article 1
is 20%.

Article 3 exception

If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.

Article 4 exception

For people in charge of 3 or more children, the
percentage mentioned at article 1 is 15%.

Default logic

4/28

Transforming this law into a program

• Input: household description
• income
• number of children

• Output: computed income tax

• Compute according to default logic
• Stay close to the text of the law

5/28

Transforming this law into a program

• Input: household description
• income
• number of children

• Output: computed income tax
• Compute according to default logic

• Stay close to the text of the law

5/28

Transforming this law into a program

• Input: household description
• income
• number of children

• Output: computed income tax
• Compute according to default logic
• Stay close to the text of the law

5/28

A simple Catala program

Article 1
The income tax is a fixed percentage of
the income.
```catala

scope IncomeTaxComputation:
definition income_tax equals
house.income * tax_rate

```

Article 2
The fixed percentage mentioned at
article 1 is 20%.
```catala

scope IncomeTaxComputation:
definition tax_rate equals 20%

```

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more
children, the percentage mentioned at
article 1 is 15%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```• Literate programming

• Follows the exception/default structure of the law

catala-lang.org 6/28

https://catala-lang.org

A simple Catala program

Article 1
The income tax is a fixed percentage of
the income.
```catala

scope IncomeTaxComputation:
definition income_tax equals
house.income * tax_rate

```

Article 2
The fixed percentage mentioned at
article 1 is 20%.
```catala

scope IncomeTaxComputation:
definition tax_rate equals 20%

```

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more
children, the percentage mentioned at
article 1 is 15%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```• Literate programming

• Follows the exception/default structure of the law

catala-lang.org 6/28

https://catala-lang.org

A simple Catala program

Article 1
The income tax is a fixed percentage of
the income.
```catala

scope IncomeTaxComputation:
definition income_tax equals
house.income * tax_rate

```

Article 2
The fixed percentage mentioned at
article 1 is 20%.
```catala

scope IncomeTaxComputation:
definition tax_rate equals 20%

```

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more
children, the percentage mentioned at
article 1 is 15%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```• Literate programming
• Follows the exception/default structure of the law

catala-lang.org 6/28

https://catala-lang.org

Kinds of error

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children,
the percentage mentioned at article 1 is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```

• Ambiguities in the code
• interpretation conflicts, e.g. income = $9,000 and children = 4

• unhandled cases

• in Catala: ambiguity = crash
• resolved by lawyers/administration if implementation is correct

• Other errors: division by zero, assertion error, etc.

7/28

Kinds of error

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children,
the percentage mentioned at article 1 is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```

• Ambiguities in the code
• interpretation conflicts, e.g. income = $9,000 and children = 4

• unhandled cases
• in Catala: ambiguity = crash
• resolved by lawyers/administration if implementation is correct

• Other errors: division by zero, assertion error, etc.

7/28

Kinds of error

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children,
the percentage mentioned at article 1 is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```

• Ambiguities in the code
• interpretation conflicts, e.g. income = $9,000 and children = 4

• unhandled cases
• in Catala: ambiguity = crash
• resolved by lawyers/administration if implementation is correct

• Other errors: division by zero, assertion error, etc.

7/28

Two levels of assurance

• Crashing in ambiguous situations

• Catala doesn’t silently favor one interpretation
• Happens when the code is executed
• Risky when used in real life

• Anticipate those bugs when the code is written: we want to find bugs a priori

8/28

Two levels of assurance

• Crashing in ambiguous situations
• Catala doesn’t silently favor one interpretation

• Happens when the code is executed
• Risky when used in real life

• Anticipate those bugs when the code is written: we want to find bugs a priori

8/28

Two levels of assurance

• Crashing in ambiguous situations
• Catala doesn’t silently favor one interpretation
• Happens when the code is executed

• Risky when used in real life

• Anticipate those bugs when the code is written: we want to find bugs a priori

8/28

Two levels of assurance

• Crashing in ambiguous situations
• Catala doesn’t silently favor one interpretation
• Happens when the code is executed
• Risky when used in real life

• Anticipate those bugs when the code is written: we want to find bugs a priori

8/28

Two levels of assurance

• Crashing in ambiguous situations
• Catala doesn’t silently favor one interpretation
• Happens when the code is executed
• Risky when used in real life

• Anticipate those bugs when the code is written: we want to find bugs a priori

8/28

Background

Program compilation & execution

Source code

. . .
Compilation

Machine code

Input

Output

Execution

9/28

Program compilation & execution

Source code . . .
Compilation

Machine code

Input

Output

Execution

9/28

Program compilation & execution

Source code . . .
Compilation

Machine code

Input

Output

Execution

9/28

Bugs

Execution can yield two outcomes

• Expected output

• Unexpected behavior

• Freeze
• Crash
• Wrong result

Bugs are relative to the expected behavior: specification

10/28

Bugs

Execution can yield two outcomes

• Expected output
• Unexpected behavior

• Freeze
• Crash
• Wrong result

Bugs are relative to the expected behavior: specification

10/28

Bugs

Execution can yield two outcomes

• Expected output
• Unexpected behavior

• Freeze

• Crash
• Wrong result

Bugs are relative to the expected behavior: specification

10/28

Bugs

Execution can yield two outcomes

• Expected output
• Unexpected behavior

• Freeze
• Crash

• Wrong result

Bugs are relative to the expected behavior: specification

10/28

Bugs

Execution can yield two outcomes

• Expected output
• Unexpected behavior

• Freeze
• Crash
• Wrong result

Bugs are relative to the expected behavior: specification

10/28

Bugs

Execution can yield two outcomes

• Expected output
• Unexpected behavior

• Freeze
• Crash
• Wrong result

Bugs are relative to the expected behavior: specification

10/28

How to find bugs

• Testing by hand: time consuming, tedious, error prone

• Automate random inputs
• Code review
• ... no guarantee that we can find every bug
• → Formal methods

• rigorous reasoning about the program
• find bugs systematically
• guarantee formally that program has bugs/no bugs

11/28

How to find bugs

• Testing by hand: time consuming, tedious, error prone
• Automate random inputs

• Code review
• ... no guarantee that we can find every bug
• → Formal methods

• rigorous reasoning about the program
• find bugs systematically
• guarantee formally that program has bugs/no bugs

11/28

How to find bugs

• Testing by hand: time consuming, tedious, error prone
• Automate random inputs
• Code review

• ... no guarantee that we can find every bug
• → Formal methods

• rigorous reasoning about the program
• find bugs systematically
• guarantee formally that program has bugs/no bugs

11/28

How to find bugs

• Testing by hand: time consuming, tedious, error prone
• Automate random inputs
• Code review
• ... no guarantee that we can find every bug

• → Formal methods

• rigorous reasoning about the program
• find bugs systematically
• guarantee formally that program has bugs/no bugs

11/28

How to find bugs

• Testing by hand: time consuming, tedious, error prone
• Automate random inputs
• Code review
• ... no guarantee that we can find every bug
• → Formal methods

• rigorous reasoning about the program
• find bugs systematically
• guarantee formally that program has bugs/no bugs

11/28

How to find bugs

• Testing by hand: time consuming, tedious, error prone
• Automate random inputs
• Code review
• ... no guarantee that we can find every bug
• → Formal methods

• rigorous reasoning about the program

• find bugs systematically
• guarantee formally that program has bugs/no bugs

11/28

How to find bugs

• Testing by hand: time consuming, tedious, error prone
• Automate random inputs
• Code review
• ... no guarantee that we can find every bug
• → Formal methods

• rigorous reasoning about the program
• find bugs systematically

• guarantee formally that program has bugs/no bugs

11/28

How to find bugs

• Testing by hand: time consuming, tedious, error prone
• Automate random inputs
• Code review
• ... no guarantee that we can find every bug
• → Formal methods

• rigorous reasoning about the program
• find bugs systematically
• guarantee formally that program has bugs/no bugs

11/28

Formal methods: reasoning on programs

• More generally, we want to reason on programs

• Identify and prove properties

• bugs: “The program always terminates without crashing”
• statistics: “The program performs less than 10 additions”
• “Income tax increases with income”
• “The marginal tax rate is bounded”

• Different properties are proven with different methods

12/28

Formal methods: reasoning on programs

• More generally, we want to reason on programs
• Identify and prove properties

• bugs: “The program always terminates without crashing”
• statistics: “The program performs less than 10 additions”
• “Income tax increases with income”
• “The marginal tax rate is bounded”

• Different properties are proven with different methods

12/28

Formal methods: reasoning on programs

• More generally, we want to reason on programs
• Identify and prove properties

• bugs: “The program always terminates without crashing”

• statistics: “The program performs less than 10 additions”
• “Income tax increases with income”
• “The marginal tax rate is bounded”

• Different properties are proven with different methods

12/28

Formal methods: reasoning on programs

• More generally, we want to reason on programs
• Identify and prove properties

• bugs: “The program always terminates without crashing”
• statistics: “The program performs less than 10 additions”

• “Income tax increases with income”
• “The marginal tax rate is bounded”

• Different properties are proven with different methods

12/28

Formal methods: reasoning on programs

• More generally, we want to reason on programs
• Identify and prove properties

• bugs: “The program always terminates without crashing”
• statistics: “The program performs less than 10 additions”
• “Income tax increases with income”

• “The marginal tax rate is bounded”

• Different properties are proven with different methods

12/28

Formal methods: reasoning on programs

• More generally, we want to reason on programs
• Identify and prove properties

• bugs: “The program always terminates without crashing”
• statistics: “The program performs less than 10 additions”
• “Income tax increases with income”
• “The marginal tax rate is bounded”

• Different properties are proven with different methods

12/28

Formal methods: reasoning on programs

• More generally, we want to reason on programs
• Identify and prove properties

• bugs: “The program always terminates without crashing”
• statistics: “The program performs less than 10 additions”
• “Income tax increases with income”
• “The marginal tax rate is bounded”

• Different properties are proven with different methods

12/28

For Catala

• Focus on finding bugs

• We expect well written Catala programs not to crash
• Property: “No inputs can lead the Catala program to an ambiguous situation”
• Our method must:

• handle default logic
• generate (counter-)examples for non-programmers

→ Concolic execution

13/28

For Catala

• Focus on finding bugs
• We expect well written Catala programs not to crash

• Property: “No inputs can lead the Catala program to an ambiguous situation”
• Our method must:

• handle default logic
• generate (counter-)examples for non-programmers

→ Concolic execution

13/28

For Catala

• Focus on finding bugs
• We expect well written Catala programs not to crash
• Property: “No inputs can lead the Catala program to an ambiguous situation”

• Our method must:
• handle default logic
• generate (counter-)examples for non-programmers

→ Concolic execution

13/28

For Catala

• Focus on finding bugs
• We expect well written Catala programs not to crash
• Property: “No inputs can lead the Catala program to an ambiguous situation”
• Our method must:

• handle default logic
• generate (counter-)examples for non-programmers

→ Concolic execution

13/28

For Catala

• Focus on finding bugs
• We expect well written Catala programs not to crash
• Property: “No inputs can lead the Catala program to an ambiguous situation”
• Our method must:

• handle default logic
• generate (counter-)examples for non-programmers

→ Concolic execution

13/28

Outline

Background

Concolic execution of default terms

Performance and usability improvements

Experimental evaluation

14/28

Concolic execution of default terms

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0

¬(x > 0) y

Solver

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

Solver
3 0 9 9 ¬(x > 0) ∧ y < 10 -

15/28

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0

¬(x > 0) y

Solver

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

Solver
3 0 9 9 ¬(x > 0) ∧ y < 10 -

15/28

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0

¬(x > 0) y

Solver
2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

Solver
3 0 9 9 ¬(x > 0) ∧ y < 10 -

15/28

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

Solver

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

Solver
3 0 9 9 ¬(x > 0) ∧ y < 10 -

15/28

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

Solver
2 0 20

error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

Solver
3 0 9 9 ¬(x > 0) ∧ y < 10 -

15/28

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

Solver
2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

Solver

3 0 9 9 ¬(x > 0) ∧ y < 10 -

15/28

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

Solver
2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

Solver
3 0 9 9 ¬(x > 0) ∧ y < 10 -

15/28

Default terms: syntax

Source code compiler−−−−−→ default terms

Expressions e ::= 〈 e1,. . .,en

︸ ︷︷ ︸
exceptions

| bdefault

︸ ︷︷ ︸
guard

:- edefault

︸ ︷︷ ︸
base case

〉

Values v ::= true | false | n | …
| ∅
| ~

16/28

Default terms: syntax

Source code compiler−−−−−→ default terms

Expressions e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault

︸ ︷︷ ︸
guard

:- edefault

︸ ︷︷ ︸
base case

〉

Values v ::= true | false | n | …
| ∅
| ~

16/28

Default terms: syntax

Source code compiler−−−−−→ default terms

Expressions e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault︸ ︷︷ ︸
guard

:- edefault

︸ ︷︷ ︸
base case

〉

Values v ::= true | false | n | …
| ∅
| ~

16/28

Default terms: syntax

Source code compiler−−−−−→ default terms

Expressions e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault︸ ︷︷ ︸
guard

:- edefault︸ ︷︷ ︸
base case

〉

Values v ::= true | false | n | …
| ∅
| ~

16/28

Default terms: syntax

Source code compiler−−−−−→ default terms

Expressions e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault︸ ︷︷ ︸
guard

:- edefault︸ ︷︷ ︸
base case

〉

Values v ::= true | false | n | …
| ∅
| ~

16/28

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

17/28

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

17/28

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

17/28

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

17/28

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

17/28

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

17/28

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = ; nb_children =

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

18/28

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

18/28

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

18/28

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

18/28

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 2

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

18/28

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

18/28

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

18/28

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 2

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

18/28

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 2

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

18/28

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = ???; nb_children = ???

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

18/28

Fixing the interpretation conflict

Suppose the lawyer says the income condition has priority.

Article 3
If the income is less than $10,000, the percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children, the percentage mentioned at article 1
is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```

19/28

Fixing the interpretation conflict

Suppose the lawyer says the income condition has priority.

Article 3
If the income is less than $10,000, the percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception children definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children, the percentage mentioned at article 1
is 15%.
```catala
scope IncomeTaxComputation:
label children
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

19/28



Fixing the interpretation conflict

Suppose the lawyer says the income condition has priority.

→ it becomes an exception to the exception.

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

〈
〈
〈 | income ≤ $10, 000 :- 10%〉
| nb_children ≥ 3 :- 15%

〉

| true :- 20%
〉

20/28



Fixing the interpretation conflict

Suppose the lawyer says the income condition has priority.
→ it becomes an exception to the exception.

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

〈
〈
〈 | income ≤ $10, 000 :- 10%〉
| nb_children ≥ 3 :- 15%

〉

| true :- 20%
〉

20/28



Performance and usability improvements



Performance optimizations using reordering

Theorem (Independence of exception evaluation order)

If there is a default value v such that

〈…,ei,. . .,ej,… | bdefault :- edefault〉 −→∗ v,

then
〈…,ej,. . .,ei,… | bdefault :- edefault〉 −→∗ v.

Example:

〈A, B, C, ~ | bdefault :- edefault〉 ∼ 〈~ , A, B,C | bdefault :- edefault〉

21/28



Performance optimizations using reordering

Theorem (Independence of exception evaluation order)
If there is a default value v such that

〈…,ei,. . .,ej,… | bdefault :- edefault〉 −→∗ v,

then
〈…,ej,. . .,ei,… | bdefault :- edefault〉 −→∗ v.

Example:

〈A, B, C, ~ | bdefault :- edefault〉 ∼ 〈~ , A, B,C | bdefault :- edefault〉

21/28



Performance optimizations using reordering

Theorem (Independence of exception evaluation order)
If there is a default value v such that

〈…,ei,. . .,ej,… | bdefault :- edefault〉 −→∗ v,

then
〈…,ej,. . .,ei,… | bdefault :- edefault〉 −→∗ v.

Example:

〈A, B, C, ~ | bdefault :- edefault〉 ∼ 〈~ , A, B,C | bdefault :- edefault〉

21/28



Performance optimizations using reordering – Example

〈A, B, C, ~ | bdefault :- edefault〉 ∼ 〈~ , A, B,C | bdefault :- edefault〉

A

B

C

~ ~

C

~ ~

B

C

~ ~

C

~ ~

~

22/28



Usability improvement

# Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult to compute by hand
• Find more usable input values using soft constraints

• e.g. round to $1,000

23/28



Usability improvement

# Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ?

→ Answer: $10,000.01

$11,000

• Difficult to compute by hand
• Find more usable input values using soft constraints

• e.g. round to $1,000

23/28



Usability improvement

# Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult to compute by hand
• Find more usable input values using soft constraints

• e.g. round to $1,000

23/28



Usability improvement

# Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult to compute by hand

• Find more usable input values using soft constraints
• e.g. round to $1,000

23/28



Usability improvement

# Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult to compute by hand
• Find more usable input values using soft constraints

• e.g. round to $1,000

23/28



Usability improvement

# Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01 $11,000

• Difficult to compute by hand
• Find more usable input values using soft constraints

• e.g. round to $1,000

23/28



Implementation of CUTECat

Source code . . .

Catala
compiler

Default terms

Input

Output

Concolic
execution

Solver

Test cases

CUTECat

• 3.4k lines of OCaml code
• Z3 SMT Solver

24/28



Implementation of CUTECat

Source code . . .

Catala
compiler

Default terms

Input

Output

Concolic
execution

Solver

Test cases

CUTECat

• 3.4k lines of OCaml code
• Z3 SMT Solver

24/28



Implementation of CUTECat

Source code . . .

Catala
compiler

Default terms

Input

Output

Concolic
execution

Solver

Test cases

CUTECat

• 3.4k lines of OCaml code
• Z3 SMT Solver

24/28



Implementation of CUTECat

Source code . . .

Catala
compiler

Default terms

Input

Output

Concolic
execution

Solver

Test cases

CUTECat

• 3.4k lines of OCaml code
• Z3 SMT Solver

24/28



Implementation of CUTECat

Source code . . .

Catala
compiler

Default terms

Input

Output

Concolic
execution

Solver

Test cases

CUTECat

• 3.4k lines of OCaml code
• Z3 SMT Solver

24/28



Experimental evaluation



Code base

Law Lines of law in Markdown Lines of Catala Total

French housing benefits 5736 8615 14351

US Tax code § 132 35 56 91
Minimum wage 74 161 235
Family quotient 36 165 201
Handwritten unit tests 139 699 838

25/28



Code base

Law Lines of law in Markdown Lines of Catala Total

French housing benefits 5736 8615 14351
US Tax code § 132 35 56 91
Minimum wage 74 161 235
Family quotient 36 165 201
Handwritten unit tests 139 699 838

25/28



Performance on small programs

Time (s)

Law No optimizations Incremental All opt. Generated tests

US Tax code 0.27 0.02 0.02 10
Minimum wage 1.01 0.08 0.08 17
Family quotient 82.61 5.21 4.34 381

26/28



Case study: housing benefits

Key results

• 186,390 test cases generated in 7h of CPU time
• 99.83% of tests satisfy soft constraints
• Able to find a conflict
• 4.5x overhead w.r.t. concrete execution
• 366s spent in solver, the rest in evaluation

27/28



Conclusion



Conclusion

• CUTECat: a concolic testing engine for computational law
• Optimizations improve efficiency and usability for lawyers
• ∼200k test cases in less than 7h on real-world example

Future work:
• Complex cases e.g. lists and dates
• Conformance testing e.g. for simulator
• Improve user-friendliness for non-programmers

Questions:
• What properties to prove?
• How to integrate analysis steps in practice?

Contact, ESOP’25 preprint, slides: pierregoutagny.fr

28/28

https://pierregoutagny.fr/


Conclusion

• CUTECat: a concolic testing engine for computational law
• Optimizations improve efficiency and usability for lawyers
• ∼200k test cases in less than 7h on real-world example

Future work:
• Complex cases e.g. lists and dates
• Conformance testing e.g. for simulator
• Improve user-friendliness for non-programmers

Questions:
• What properties to prove?
• How to integrate analysis steps in practice?

Contact, ESOP’25 preprint, slides: pierregoutagny.fr

28/28

https://pierregoutagny.fr/


Conclusion

• CUTECat: a concolic testing engine for computational law
• Optimizations improve efficiency and usability for lawyers
• ∼200k test cases in less than 7h on real-world example

Future work:
• Complex cases e.g. lists and dates
• Conformance testing e.g. for simulator
• Improve user-friendliness for non-programmers

Questions:
• What properties to prove?
• How to integrate analysis steps in practice?

Contact, ESOP’25 preprint, slides: pierregoutagny.fr

28/28

https://pierregoutagny.fr/


Conclusion

• CUTECat: a concolic testing engine for computational law
• Optimizations improve efficiency and usability for lawyers
• ∼200k test cases in less than 7h on real-world example

Future work:
• Complex cases e.g. lists and dates
• Conformance testing e.g. for simulator
• Improve user-friendliness for non-programmers

Questions:
• What properties to prove?
• How to integrate analysis steps in practice?

Contact, ESOP’25 preprint, slides: pierregoutagny.fr
28/28

https://pierregoutagny.fr/




References i



Ablation study

Generated tests vs time


	Introduction
	Background
	Concolic execution of default terms
	Performance and usability improvements
	Experimental evaluation
	Conclusion
	Appendix

