
CUTECat
Concolic Execution for Computational Law

Pierre Goutagny1 Aymeric Fromherz2 Raphaël Monat1

ESOP’25, Hamilton, Canada, May 8 2025
1Inria Lille, 2Inria Paris

1/22

Introduction

Computational law

• Computational laws specify algorithms: taxes, social benefits, etc.
• Administrations implement them as programs
• Critical: e.g. French military payroll system Louvois: 120k military personnel
over- or under-paid, overpayments totalling 545M € to pay back

2/22

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the
income.

Article 2

default case

The fixed percentage mentioned at article 1
is 20%.

Article 3

exception

If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the
percentage mentioned at article 1 is 15%.

Default logic

3/22

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the
income.

Article 2

default case

The fixed percentage mentioned at article 1
is 20%.

Article 3

exception

If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the
percentage mentioned at article 1 is 15%.

Default logic

3/22

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the
income.

Article 2 default case

The fixed percentage mentioned at article 1
is 20%.

Article 3

exception

If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the
percentage mentioned at article 1 is 15%.

Default logic

3/22

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the
income.

Article 2 default case

The fixed percentage mentioned at article 1
is 20%.

Article 3

exception

If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the
percentage mentioned at article 1 is 15%.

Default logic

3/22

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the
income.

Article 2 default case

The fixed percentage mentioned at article 1
is 20%.

Article 3 exception

If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.

Article 4 exception

For people in charge of 3 or more children, the
percentage mentioned at article 1 is 15%.

Default logic

3/22

The Catala domain-specific language

Article 1
The income tax is a fixed percentage of
the income.
```catala

scope IncomeTaxComputation:
definition income_tax equals
house.income * tax_rate

```

Article 2
The fixed percentage mentioned at
article 1 is 20%.
```catala

scope IncomeTaxComputation:
definition tax_rate equals 20%

```

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more
children, the percentage mentioned at
article 1 is 15%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```• Literate programming

• Follows the exception/default structure of the law

catala-lang.org 4/22

https://catala-lang.org

The Catala domain-specific language

Article 1
The income tax is a fixed percentage of
the income.
```catala

scope IncomeTaxComputation:
definition income_tax equals
house.income * tax_rate

```

Article 2
The fixed percentage mentioned at
article 1 is 20%.
```catala

scope IncomeTaxComputation:
definition tax_rate equals 20%

```

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more
children, the percentage mentioned at
article 1 is 15%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```• Literate programming

• Follows the exception/default structure of the law

catala-lang.org 4/22

https://catala-lang.org

The Catala domain-specific language

Article 1
The income tax is a fixed percentage of
the income.
```catala

scope IncomeTaxComputation:
definition income_tax equals
house.income * tax_rate

```

Article 2
The fixed percentage mentioned at
article 1 is 20%.
```catala

scope IncomeTaxComputation:
definition tax_rate equals 20%

```

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more
children, the percentage mentioned at
article 1 is 15%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```• Literate programming
• Follows the exception/default structure of the law

catala-lang.org 4/22

https://catala-lang.org

Kinds of error

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children,
the percentage mentioned at article 1 is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```

• Ambiguities in the code
• interpretation conflicts, e.g. income = $9,000 and children = 4

• unhandled cases

• in Catala: ambiguity = runtime error
• resolved by lawyers/administration if implementation is correct

• Other errors: division by zero, assertion error, etc.

5/22

Kinds of error

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children,
the percentage mentioned at article 1 is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```

• Ambiguities in the code
• interpretation conflicts, e.g. income = $9,000 and children = 4

• unhandled cases
• in Catala: ambiguity = runtime error
• resolved by lawyers/administration if implementation is correct

• Other errors: division by zero, assertion error, etc.

5/22

Kinds of error

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children,
the percentage mentioned at article 1 is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```

• Ambiguities in the code
• interpretation conflicts, e.g. income = $9,000 and children = 4

• unhandled cases
• in Catala: ambiguity = runtime error
• resolved by lawyers/administration if implementation is correct

• Other errors: division by zero, assertion error, etc.

5/22

Finding errors

What properties do we want in our search for errors?

• Find errors automatically
• Systematically:

• find complex corner cases
• complete coverage

• Handle default logic
• Generate (counter-)examples for non-programmer users

→ Symbolic execution

• Avoid some common obstacles for free:
• no loops or memory
• all programs terminate

• But some features are hard to encode symbolically

6/22

Finding errors

What properties do we want in our search for errors?

• Find errors automatically
• Systematically:

• find complex corner cases
• complete coverage

• Handle default logic
• Generate (counter-)examples for non-programmer users

→ Symbolic execution

• Avoid some common obstacles for free:
• no loops or memory
• all programs terminate

• But some features are hard to encode symbolically

6/22

Finding errors

What properties do we want in our search for errors?

• Find errors automatically
• Systematically:

• find complex corner cases
• complete coverage

• Handle default logic
• Generate (counter-)examples for non-programmer users

→ Symbolic execution

• Avoid some common obstacles for free:
• no loops or memory
• all programs terminate

• But some features are hard to encode symbolically

6/22

Finding errors

What properties do we want in our search for errors?

• Find errors automatically
• Systematically:

• find complex corner cases
• complete coverage

• Handle default logic
• Generate (counter-)examples for non-programmer users

→ Symbolic execution

• Avoid some common obstacles for free:
• no loops or memory
• all programs terminate

• But some features are hard to encode symbolically
6/22

Outline

Concolic execution of default terms

Performance and usability improvements

Experimental evaluation

7/22

Concolic execution of default terms

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0

¬(x > 0) y

SMT

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT
3 0 9 9 ¬(x > 0) ∧ y < 10 -

8/22

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0

¬(x > 0) y

SMT

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT
3 0 9 9 ¬(x > 0) ∧ y < 10 -

8/22

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0

¬(x > 0) y

SMT
2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT
3 0 9 9 ¬(x > 0) ∧ y < 10 -

8/22

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

SMT

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT
3 0 9 9 ¬(x > 0) ∧ y < 10 -

8/22

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

SMT
2 0 20

error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT
3 0 9 9 ¬(x > 0) ∧ y < 10 -

8/22

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

SMT
2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT

3 0 9 9 ¬(x > 0) ∧ y < 10 -

8/22

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 10

then y

else error

if x > 0

0

x > 0

if y < 10

y

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

SMT
2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT
3 0 9 9 ¬(x > 0) ∧ y < 10 -

8/22

Default terms: syntax

Source code compiler−−−−−→ default terms

e ::= 〈 e1,. . .,en

︸ ︷︷ ︸
exceptions

| bdefault

︸ ︷︷ ︸
guard

:- edefault

︸ ︷︷ ︸
base case

〉

v ::= true | false | n | …
| ∅
| ~

9/22

Default terms: syntax

Source code compiler−−−−−→ default terms

e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault

︸ ︷︷ ︸
guard

:- edefault

︸ ︷︷ ︸
base case

〉

v ::= true | false | n | …
| ∅
| ~

9/22

Default terms: syntax

Source code compiler−−−−−→ default terms

e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault︸ ︷︷ ︸
guard

:- edefault

︸ ︷︷ ︸
base case

〉

v ::= true | false | n | …
| ∅
| ~

9/22

Default terms: syntax

Source code compiler−−−−−→ default terms

e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault︸ ︷︷ ︸
guard

:- edefault︸ ︷︷ ︸
base case

〉

v ::= true | false | n | …
| ∅
| ~

9/22

Default terms: syntax

Source code compiler−−−−−→ default terms

e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault︸ ︷︷ ︸
guard

:- edefault︸ ︷︷ ︸
base case

〉

v ::= true | false | n | …
| ∅
| ~

9/22

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

10/22

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

10/22

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

10/22

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

10/22

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

10/22

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

definition tax_rate equals 20%

1. Evaluate all exceptions
2. If exactly 1 exception is raised, then return its value
3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault
• Else if bdefault = false, then return ∅

10/22

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = ; nb_children =

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/22

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/22

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/22

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/22

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 2

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/22

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/22

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/22

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 2

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/22

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 2

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/22

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = ???; nb_children = ???

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/22

Fixing the interpretation conflict

Suppose the lawyer says the income condition has priority.

→ it becomes an exception to the exception.

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

〈
〈
〈 | income ≤ $10, 000 :- 10%〉
| nb_children ≥ 3 :- 15%

〉

| true :- 20%
〉

12/22

Fixing the interpretation conflict

Suppose the lawyer says the income condition has priority.
→ it becomes an exception to the exception.

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

〈
〈
〈 | income ≤ $10, 000 :- 10%〉
| nb_children ≥ 3 :- 15%

〉

| true :- 20%
〉

12/22

Performance and usability improvements

Performance optimizations using reordering

Theorem (Independence of exception evaluation order)
If there is a default value v such that

〈…,ei,. . .,ej,… | bdefault :- edefault〉 −→∗ v,

then
〈…,ej,. . .,ei,… | bdefault :- edefault〉 −→∗ v.

Example:

〈A, B, C, ~ | bdefault :- edefault〉 ∼ 〈~ , A, B,C | bdefault :- edefault〉

13/22

Performance optimizations using reordering

Theorem (Independence of exception evaluation order)
If there is a default value v such that

〈…,ei,. . .,ej,… | bdefault :- edefault〉 −→∗ v,

then
〈…,ej,. . .,ei,… | bdefault :- edefault〉 −→∗ v.

Example:

〈A, B, C, ~ | bdefault :- edefault〉 ∼ 〈~ , A, B,C | bdefault :- edefault〉

13/22

Performance optimizations using reordering – Example

〈A, B, C, ~ | bdefault :- edefault〉 ∼ 〈~ , A, B,C | bdefault :- edefault〉

A

B

C

~ ~

C

~ ~

B

C

~ ~

C

~ ~

~

14/22

Usability improvement

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult to compute by hand
• Find more usable input values using soft constraints

• e.g. round to $1,000

15/22

Usability improvement

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ?

→ Answer: $10,000.01

$11,000

• Difficult to compute by hand
• Find more usable input values using soft constraints

• e.g. round to $1,000

15/22

Usability improvement

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult to compute by hand
• Find more usable input values using soft constraints

• e.g. round to $1,000

15/22

Usability improvement

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult to compute by hand

• Find more usable input values using soft constraints
• e.g. round to $1,000

15/22

Usability improvement

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult to compute by hand
• Find more usable input values using soft constraints

• e.g. round to $1,000

15/22

Usability improvement

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01 $11,000

• Difficult to compute by hand
• Find more usable input values using soft constraints

• e.g. round to $1,000

15/22

Performance optimizations of the solver

• Incremental mode

• Solver keeps a stack of constraints
• Keeps satisfiability status of save points
• Works best with depth-first exploration
• Allows efficient soft constraints

• Redundant constraint elimination

16/22

Performance optimizations of the solver

• Incremental mode
• Solver keeps a stack of constraints

• Keeps satisfiability status of save points
• Works best with depth-first exploration
• Allows efficient soft constraints

• Redundant constraint elimination

16/22

Performance optimizations of the solver

• Incremental mode
• Solver keeps a stack of constraints
• Keeps satisfiability status of save points

• Works best with depth-first exploration
• Allows efficient soft constraints

• Redundant constraint elimination

16/22

Performance optimizations of the solver

• Incremental mode
• Solver keeps a stack of constraints
• Keeps satisfiability status of save points
• Works best with depth-first exploration

• Allows efficient soft constraints

• Redundant constraint elimination

16/22

Performance optimizations of the solver

• Incremental mode
• Solver keeps a stack of constraints
• Keeps satisfiability status of save points
• Works best with depth-first exploration
• Allows efficient soft constraints

• Redundant constraint elimination

16/22

Performance optimizations of the solver

• Incremental mode
• Solver keeps a stack of constraints
• Keeps satisfiability status of save points
• Works best with depth-first exploration
• Allows efficient soft constraints

• Redundant constraint elimination

16/22

Implementation of CUTECat

Source
code

. . . Default
calculus

Statement
calculus

Interpreter

• Integrated into Catala compiler’s default calculus IR
• 3.4k lines of OCaml code
• Z3 SMT Solver

17/22

Implementation of CUTECat

Source
code

. . . Default
calculus

Statement
calculus

InterpreterCUTECat

• Integrated into Catala compiler’s default calculus IR
• 3.4k lines of OCaml code
• Z3 SMT Solver

17/22

Experimental evaluation

Code base

Law Lines of law in Markdown Lines of Catala Total

French housing benefits 5736 8615 14351

US Tax code § 132 35 56 91
Minimum wage 74 161 235
Family quotient 36 165 201
Handwritten unit tests 139 699 838

18/22

Code base

Law Lines of law in Markdown Lines of Catala Total

French housing benefits 5736 8615 14351
US Tax code § 132 35 56 91
Minimum wage 74 161 235
Family quotient 36 165 201
Handwritten unit tests 139 699 838

18/22

Performance on small programs

Time (s)

Law No optimizations Incremental All opt. Generated tests

US Tax code 0.27 0.02 0.02 10
Minimum wage 1.01 0.08 0.08 17
Family quotient 82.61 5.21 4.34 381

19/22

Case study: housing benefits

Key results

• 186,390 test cases generated in 7h of CPU time
• 99.83% of tests satisfy soft constraints
• 366s spent in solver, the rest in evaluation
• Able to find a conflict

20/22

Overhead of the analysis

• 4.5x overhead w.r.t. Catala interpreter
• Optimizations make SymCC1 or SYMSAN2 reach the same order of magnitude
• KLEE sometimes reports several orders of magnitude3

• Future work: more optimizations

1Poeplau and Francillon [2020]
2Chen et al. [2022]
3Yun et al. [2018]

21/22

Overhead of the analysis

• 4.5x overhead w.r.t. Catala interpreter
• Optimizations make SymCC1 or SYMSAN2 reach the same order of magnitude
• KLEE sometimes reports several orders of magnitude3

• Future work: more optimizations

1Poeplau and Francillon [2020]
2Chen et al. [2022]
3Yun et al. [2018]

21/22

Conclusion

Conclusion

• CUTECat: a concolic testing engine for computational law
• Novel concolic semantics for default logic
• Integrated with Catala toolchain
• Optimizations improve efficiency and usability by lawyers
• ∼200k test cases in less than 7h on real-world example

Future work:

• Complex features e.g. lists and dates
• Conformance testing e.g. for simulator
• Improve user-friendliness for non-programmers

Contact, slides: pierregoutagny.fr

22/22

https://pierregoutagny.fr/

Conclusion

• CUTECat: a concolic testing engine for computational law
• Novel concolic semantics for default logic
• Integrated with Catala toolchain
• Optimizations improve efficiency and usability by lawyers
• ∼200k test cases in less than 7h on real-world example

Future work:

• Complex features e.g. lists and dates
• Conformance testing e.g. for simulator
• Improve user-friendliness for non-programmers

Contact, slides: pierregoutagny.fr

22/22

https://pierregoutagny.fr/

Conclusion

• CUTECat: a concolic testing engine for computational law
• Novel concolic semantics for default logic
• Integrated with Catala toolchain
• Optimizations improve efficiency and usability by lawyers
• ∼200k test cases in less than 7h on real-world example

Future work:

• Complex features e.g. lists and dates
• Conformance testing e.g. for simulator
• Improve user-friendliness for non-programmers

Contact, slides: pierregoutagny.fr

22/22

https://pierregoutagny.fr/

References i

Chen, J., Han, W., Yin, M., Zeng, H., Song, C., Lee, B., Yin, H., Shin, I.: SYMSAN: Time
and space efficient concolic execution via dynamic data-flow analysis. In:
USENIX Security Symposium, pp. 2531–2548, USENIX Association (2022), URL
https://www.usenix.org/conference/usenixsecurity22/

presentation/chen-ju

Poeplau, S., Francillon, A.: Symbolic execution with SymCC: Don’t interpret,
compile! In: Proceedings of the 29th USENIX Conference on Security
Symposium, pp. 181–198, SEC’20, USENIX Association (2020), URL
https://dl.acm.org/doi/10.5555/3489212.3489223

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-ju
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-ju
https://dl.acm.org/doi/10.5555/3489212.3489223

References ii

Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM : A practical concolic execution engine
tailored for hybrid fuzzing. In: USENIX Security Symposium, pp. 745–761, USENIX
Association (2018), URL
https://dl.acm.org/doi/10.5555/3277203.3277260

https://dl.acm.org/doi/10.5555/3277203.3277260

Symbolic vs Concolic execution

Why not purely symbolic execution?

• Possible incompleteness due to mixed integer/rational reasoning
• Lists are hard to encode
• Dates can be ambiguous: what is 29 February 2024 + 1 year?
• We want to generate counter-examples

Symbolic vs Concolic execution

Why not purely symbolic execution?

• Possible incompleteness due to mixed integer/rational reasoning

• Lists are hard to encode
• Dates can be ambiguous: what is 29 February 2024 + 1 year?
• We want to generate counter-examples

Symbolic vs Concolic execution

Why not purely symbolic execution?

• Possible incompleteness due to mixed integer/rational reasoning
• Lists are hard to encode

• Dates can be ambiguous: what is 29 February 2024 + 1 year?
• We want to generate counter-examples

Symbolic vs Concolic execution

Why not purely symbolic execution?

• Possible incompleteness due to mixed integer/rational reasoning
• Lists are hard to encode
• Dates can be ambiguous: what is 29 February 2024 + 1 year?

• We want to generate counter-examples

Symbolic vs Concolic execution

Why not purely symbolic execution?

• Possible incompleteness due to mixed integer/rational reasoning
• Lists are hard to encode
• Dates can be ambiguous: what is 29 February 2024 + 1 year?
• We want to generate counter-examples

Fixing the interpretation conflict with labels

Suppose the lawyer says the income condition has priority.

Article 3
If the income is less than $10,000, the percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children, the percentage mentioned at article 1
is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```


Fixing the interpretation conflict with labels

Suppose the lawyer says the income condition has priority.

Article 3
If the income is less than $10,000, the percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception children definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children, the percentage mentioned at article 1
is 15%.
```catala
scope IncomeTaxComputation:
label children
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%



Ablation study

Generated tests vs time


	Introduction
	Concolic execution of default terms
	Performance and usability improvements
	Experimental evaluation
	Conclusion
	Appendix

