
CUTECat

Concolic Execution for Computational Law

Pierre Goutagny1 Aymeric Fromherz2 Raphaël Monat1

GT MTV2, November 21 2024

1Inria Lille, 2Inria Paris

1/19

Introduction

Computational law

• Computational laws encode algorithms: taxes, social benefits, etc.

• Administrations implement them as programs

• Critical: e.g. French military payroll system Louvois: 120k military personnel

over- or under-paid, overpayments totalling 545M € to pay back

2/19

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the

income.

Article 2

default case

The fixed percentage mentioned at article 1

is 20%.

Article 3

exception

If the income is less than $10,000, the

percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the

percentage mentioned at article 1 is 15%.

Default logic

3/19

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the

income.

Article 2

default case

The fixed percentage mentioned at article 1

is 20%.

Article 3

exception

If the income is less than $10,000, the

percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the

percentage mentioned at article 1 is 15%.

Default logic

3/19

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the

income.

Article 2 default case

The fixed percentage mentioned at article 1

is 20%.

Article 3

exception

If the income is less than $10,000, the

percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the

percentage mentioned at article 1 is 15%.

Default logic

3/19

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the

income.

Article 2 default case

The fixed percentage mentioned at article 1

is 20%.

Article 3

exception

If the income is less than $10,000, the

percentage mentioned at article 1 is 10%.

Article 4

exception

For people in charge of 3 or more children, the

percentage mentioned at article 1 is 15%.

Default logic

3/19

Structure of computational law: income tax example

Article 1

The income tax is a fixed percentage of the

income.

Article 2 default case

The fixed percentage mentioned at article 1

is 20%.

Article 3 exception

If the income is less than $10,000, the

percentage mentioned at article 1 is 10%.

Article 4 exception

For people in charge of 3 or more children, the

percentage mentioned at article 1 is 15%.

Default logic

3/19

The Catala domain-specific language

Article 1
The income tax is a fixed percentage of
the income.
```catala

scope IncomeTaxComputation:
definition income_tax equals
house.income * tax_rate

```

Article 2
The fixed percentage mentioned at
article 1 is 20%.
```catala

scope IncomeTaxComputation:
definition tax_rate equals 20%

```

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more
children, the percentage mentioned at
article 1 is 15%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```• Literate programming

• Follows the exception/default structure of the law

catala-lang.org 4/19

https://catala-lang.org

The Catala domain-specific language

Article 1
The income tax is a fixed percentage of
the income.
```catala

scope IncomeTaxComputation:
definition income_tax equals
house.income * tax_rate

```

Article 2
The fixed percentage mentioned at
article 1 is 20%.
```catala

scope IncomeTaxComputation:
definition tax_rate equals 20%

```

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more
children, the percentage mentioned at
article 1 is 15%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```• Literate programming

• Follows the exception/default structure of the law

catala-lang.org 4/19

https://catala-lang.org

The Catala domain-specific language

Article 1
The income tax is a fixed percentage of
the income.
```catala

scope IncomeTaxComputation:
definition income_tax equals
house.income * tax_rate

```

Article 2
The fixed percentage mentioned at
article 1 is 20%.
```catala

scope IncomeTaxComputation:
definition tax_rate equals 20%

```

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more
children, the percentage mentioned at
article 1 is 15%.
```catala

scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```• Literate programming
• Follows the exception/default structure of the law

catala-lang.org 4/19

https://catala-lang.org

Kinds of error

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children,
the percentage mentioned at article 1 is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```

• Ambiguities in the code

• interpretation conflicts, e.g. income = $9,000 and children = 4

• unhandled cases

• in Catala: ambiguity = runtime error

• resolved by lawyer/court if implementation is correct

• Other errors: division by zero, assertion error, etc.

5/19

Kinds of error

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children,
the percentage mentioned at article 1 is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```

• Ambiguities in the code

• interpretation conflicts, e.g. income = $9,000 and children = 4

• unhandled cases

• in Catala: ambiguity = runtime error

• resolved by lawyer/court if implementation is correct

• Other errors: division by zero, assertion error, etc.

5/19

Kinds of error

Article 3
If the income is less than $10,000, the
percentage mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Article 4
For people in charge of 3 or more children,
the percentage mentioned at article 1 is 15%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.nb_children >= 3
consequence equals 15%

```

• Ambiguities in the code

• interpretation conflicts, e.g. income = $9,000 and children = 4

• unhandled cases

• in Catala: ambiguity = runtime error

• resolved by lawyer/court if implementation is correct

• Other errors: division by zero, assertion error, etc.

5/19

Finding errors

What properties do we want in our search for errors?

• Find errors automatically

• Systematically:

• find complex corner cases

• complete coverage

• Handle default logic

• Generate (counter-)examples for non-expert users

→ Symbolic execution

• Avoid some common obstacles for free:

• no loops or memory

• all programs terminate

• But some features are hard to encode symbolically

6/19

Finding errors

What properties do we want in our search for errors?

• Find errors automatically

• Systematically:

• find complex corner cases

• complete coverage

• Handle default logic

• Generate (counter-)examples for non-expert users

→ Symbolic execution

• Avoid some common obstacles for free:

• no loops or memory

• all programs terminate

• But some features are hard to encode symbolically

6/19

Finding errors

What properties do we want in our search for errors?

• Find errors automatically

• Systematically:

• find complex corner cases

• complete coverage

• Handle default logic

• Generate (counter-)examples for non-expert users

→ Symbolic execution

• Avoid some common obstacles for free:

• no loops or memory

• all programs terminate

• But some features are hard to encode symbolically

6/19

Finding errors

What properties do we want in our search for errors?

• Find errors automatically

• Systematically:

• find complex corner cases

• complete coverage

• Handle default logic

• Generate (counter-)examples for non-expert users

→ Symbolic execution

• Avoid some common obstacles for free:

• no loops or memory

• all programs terminate

• But some features are hard to encode symbolically

6/19

Outline

Concolic execution of default terms

Performance and usability improvements

Experimental evaluation

7/19

Concolic execution of default terms

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 0

then 1

else error

if x > 0

0

x > 0

if y < 10

1

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0

¬(x > 0) y

SMT

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT

3 0 9 1 ¬(x > 0) ∧ y < 10 -

8/19

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 0

then 1

else error

if x > 0

0

x > 0

if y < 10

1

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0

¬(x > 0) y

SMT

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT

3 0 9 1 ¬(x > 0) ∧ y < 10 -

8/19

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 0

then 1

else error

if x > 0

0

x > 0

if y < 10

1

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0

¬(x > 0) y

SMT

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT

3 0 9 1 ¬(x > 0) ∧ y < 10 -

8/19

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 0

then 1

else error

if x > 0

0

x > 0

if y < 10

1

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

SMT

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT

3 0 9 1 ¬(x > 0) ∧ y < 10 -

8/19

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 0

then 1

else error

if x > 0

0

x > 0

if y < 10

1

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

SMT

2 0 20

error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT

3 0 9 1 ¬(x > 0) ∧ y < 10 -

8/19

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 0

then 1

else error

if x > 0

0

x > 0

if y < 10

1

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

SMT

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT

3 0 9 1 ¬(x > 0) ∧ y < 10 -

8/19

Concolic execution: first example

Concolic = concrete + symbolic

if x > 0

then 0

else if y < 0

then 1

else error

if x > 0

0

x > 0

if y < 10

1

y < 10

error

¬(y < 10)

¬(x > 0)

Step x y Output Constraints after evaluation Next path to try

1 1 20 0 x > 0 ¬(x > 0) y

SMT

2 0 20 error ¬(x > 0) ∧ ¬(y < 10) ¬(x > 0) ∧ y < 10 y

SMT

3 0 9 1 ¬(x > 0) ∧ y < 10 -

8/19

Default terms: syntax

Source code
compiler−−−−−→ default terms

e ::= 〈 e1,. . .,en

︸ ︷︷ ︸
exceptions

| bdefault

︸ ︷︷ ︸
guard

:- edefault

︸ ︷︷ ︸
base case

〉

v ::= true | false | n | …
| ∅
| ~

9/19

Default terms: syntax

Source code
compiler−−−−−→ default terms

e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault

︸ ︷︷ ︸
guard

:- edefault

︸ ︷︷ ︸
base case

〉

v ::= true | false | n | …
| ∅
| ~

9/19

Default terms: syntax

Source code
compiler−−−−−→ default terms

e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault︸ ︷︷ ︸
guard

:- edefault

︸ ︷︷ ︸
base case

〉

v ::= true | false | n | …
| ∅
| ~

9/19

Default terms: syntax

Source code
compiler−−−−−→ default terms

e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault︸ ︷︷ ︸
guard

:- edefault︸ ︷︷ ︸
base case

〉

v ::= true | false | n | …
| ∅
| ~

9/19

Default terms: syntax

Source code
compiler−−−−−→ default terms

e ::= 〈 e1,. . .,en︸ ︷︷ ︸
exceptions

| bdefault︸ ︷︷ ︸
guard

:- edefault︸ ︷︷ ︸
base case

〉

v ::= true | false | n | …
| ∅
| ~

9/19

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

1. Evaluate all exceptions

2. If exactly 1 exception is raised, then return its value

3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault

• Else if bdefault = false, then return ∅

10/19

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

1. Evaluate all exceptions

2. If exactly 1 exception is raised, then return its value

3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault

• Else if bdefault = false, then return ∅
10/19

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

1. Evaluate all exceptions

2. If exactly 1 exception is raised, then return its value

3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault

• Else if bdefault = false, then return ∅
10/19

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

1. Evaluate all exceptions

2. If exactly 1 exception is raised, then return its value

3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault

• Else if bdefault = false, then return ∅
10/19

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

1. Evaluate all exceptions

2. If exactly 1 exception is raised, then return its value

3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault

• Else if bdefault = false, then return ∅
10/19

Default terms: semantics

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

1. Evaluate all exceptions

2. If exactly 1 exception is raised, then return its value

3. Else if at least 2 exceptions are raised, then return ~
4. Else if 0 exceptions are raised, evaluate bdefault and

• If bdefault = true, then evaluate edefault

• Else if bdefault = false, then return ∅
10/19

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = ; nb_children =

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/19

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/19

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/19

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/19

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $9,000; nb_children = 2

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/19

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/19

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 4

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/19

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 2

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/19

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = $11,000; nb_children = 2

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/19

Concolic execution of default terms

〈〈 | income ≤ $10, 000 :- 10%〉,〈 | nb_children ≥ 3 :- 15%〉 | true :- 20%〉

income = ???; nb_children = ???

income ≤ $10, 000

nb_children ≥ 3

~ 10%

nb_children ≥ 3

15% true

20% (unreachable)

11/19

Fixing the interpretation conflict

Suppose the lawyer says the income condition has priority.

→ it becomes an exception to the exception.

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

〈
〈
〈 | income ≤ $10, 000 :- 10%〉
| nb_children ≥ 3 :- 15%

〉

| true :- 20%

〉

12/19

Fixing the interpretation conflict

Suppose the lawyer says the income condition has priority.

→ it becomes an exception to the exception.

〈
〈 | income ≤ $10, 000 :- 10%〉,
〈 | nb_children ≥ 3 :- 15%〉
| true :- 20%

〉

〈
〈
〈 | income ≤ $10, 000 :- 10%〉
| nb_children ≥ 3 :- 15%

〉

| true :- 20%

〉

12/19

Performance and usability improvements

Performance optimizations using reordering

Theorem (Independence of exception evaluation order)
If there is a default value v such that

〈…,ei,. . .,ej,… | bdefault :- edefault〉 −→∗ v,

then

〈…,ej,. . .,ei,… | bdefault :- edefault〉 −→∗ v.

Example:

〈 …,~ | bdefault :- edefault〉 ∼ 〈~ , … | bdefault :- edefault〉

13/19

Performance optimizations using reordering

Theorem (Independence of exception evaluation order)
If there is a default value v such that

〈…,ei,. . .,ej,… | bdefault :- edefault〉 −→∗ v,

then

〈…,ej,. . .,ei,… | bdefault :- edefault〉 −→∗ v.

Example:

〈 …,~ | bdefault :- edefault〉 ∼ 〈~ , … | bdefault :- edefault〉

13/19

Human-compatible test cases

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult for lawyers to compute by hand

• Find more usable input values using soft constraints

• e.g. round to $1,000

14/19

Human-compatible test cases

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ?

→ Answer: $10,000.01

$11,000

• Difficult for lawyers to compute by hand

• Find more usable input values using soft constraints

• e.g. round to $1,000

14/19

Human-compatible test cases

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult for lawyers to compute by hand

• Find more usable input values using soft constraints

• e.g. round to $1,000

14/19

Human-compatible test cases

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult for lawyers to compute by hand

• Find more usable input values using soft constraints

• e.g. round to $1,000

14/19

Human-compatible test cases

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01

$11,000

• Difficult for lawyers to compute by hand

• Find more usable input values using soft constraints

• e.g. round to $1,000

14/19

Human-compatible test cases

Article 3
If the income is less than $10,000, the percentage
mentioned at article 1 is 10%.
```catala
scope IncomeTaxComputation:
exception definition tax_rate
under condition house.income <= $10,000
consequence equals 10%

```

Query: income > $10,000 ? → Answer: $10,000.01 $11,000

• Difficult for lawyers to compute by hand

• Find more usable input values using soft constraints

• e.g. round to $1,000

14/19

Implementation of CUTECat

Source

code
. . . Default

calculus

Statement

calculus

Interpreter

• Integrated into Catala compiler’s default calculus IR

• 3.4k lines of OCaml code

• Z3 SMT Solver

15/19

Implementation of CUTECat

Source

code
. . . Default

calculus

Statement

calculus

InterpreterCUTECat

• Integrated into Catala compiler’s default calculus IR

• 3.4k lines of OCaml code

• Z3 SMT Solver

15/19

Experimental evaluation

Code base

Law Lines of law in Markdown Lines of Catala Total

French housing benefits 5736 8615 14351

US Tax code § 132 35 56 91

Minimum wage 74 161 235

Family quotient 36 165 201

Handwritten unit tests 139 699 838

16/19

Code base

Law Lines of law in Markdown Lines of Catala Total

French housing benefits 5736 8615 14351

US Tax code § 132 35 56 91

Minimum wage 74 161 235

Family quotient 36 165 201

Handwritten unit tests 139 699 838

16/19

Performance on small programs

Time (s)

Law No optimizations Optimized Generated tests

US Tax code 0.27 0.02 10

Minimum wage 1.01 0.08 17

Family quotient 82.61 4.34 381

17/19

Case study: housing benefits

Key results

• 186,390 test cases generated in 7h of CPU time

• 99.83% of tests satisfy soft constraints

• 366s spent in solver, the rest in evaluation

• 4.5x overhead w.r.t. Catala interpreter

• Able to find a conflict

18/19

Conclusion

Conclusion

• CUTECat: a concolic testing engine for computational law

• Novel concolic semantics for default logic

• Integrated with Catala toolchain

• Optimizations improve efficiency and usability by lawyers

• 186,390 test cases in less than 7h on real-world example

Future work:

• Complex cases e.g. lists and dates

• Improve user-friendliness for non-technical users

Contact, preprint, slides: pierregoutagny.fr

19/19

https://pierregoutagny.fr/

Conclusion

• CUTECat: a concolic testing engine for computational law

• Novel concolic semantics for default logic

• Integrated with Catala toolchain

• Optimizations improve efficiency and usability by lawyers

• 186,390 test cases in less than 7h on real-world example

Future work:

• Complex cases e.g. lists and dates

• Improve user-friendliness for non-technical users

Contact, preprint, slides: pierregoutagny.fr

19/19

https://pierregoutagny.fr/

Conclusion

• CUTECat: a concolic testing engine for computational law

• Novel concolic semantics for default logic

• Integrated with Catala toolchain

• Optimizations improve efficiency and usability by lawyers

• 186,390 test cases in less than 7h on real-world example

Future work:

• Complex cases e.g. lists and dates

• Improve user-friendliness for non-technical users

Contact, preprint, slides: pierregoutagny.fr

19/19

https://pierregoutagny.fr/

Ablation study

Generated tests vs time

	Introduction
	Concolic execution of default terms
	Performance and usability improvements
	Experimental evaluation
	Conclusion
	Appendix

